Skip to main content
Log in

N-doped carbon shell encapsulated PtZn intermetallic nanoparticles as highly efficient catalysts for fuel cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The high cost and poor durability of Pt nanoparticles (NPs) have always been great challenges to the commercialization of proton exchange membrane fuel cells (PEMFCs). Pt-based intermetallic NPs with a highly ordered structure are considered as promising catalysts for PEMFCs due to their high catalytic activity and stability. Here, we reported a facile method to synthesize N-doped carbon encapsulated PtZn intermetallic (PtZn@NC) NPs via the pyrolysis of Pt@Zn-based zeolitic imidazolate framework-8 (Pt@ZIF-8) composites. The catalyst obtained at 800 °C (10%-PtZn@NC-800) was found to exhibit a half-wave potential (E1/2) up to 0.912 V versus reversible hydrogen electrode (RHE) for the cathodic oxygen reduction reaction in an acidic medium, which shifted by 26 mV positively compared to the benchmark Pt/C catalyst. Besides, the mass activity and specific activity of 10%-PtZn@NC-800 at 0.9 V versus RHE were nearly 3 and 5 times as great as that of commercial Pt/C, respectively. It is worth noting that the PtZn@NC showed excellent stability in ORR with just 1 mV of the E1/2 loss after 5,000 cycles, which is superior to that of most reported PtM catalysts (especially those disordered solid solutions). Furthermore, such N-doped carbon shell encapsulated PtZn intermetallic NPs showed significantly enhanced performances towards the anodic oxidation reaction of organic small molecules (such as methanol and formic acid). The synergistic effects of the N doped carbon encapsulation structure and intermetallic NPs are responsible for outstanding performances of the catalysts. This work provides us a new engineering strategy to acquire highly active and stable multifunctional catalysts for PEMFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.

    Article  CAS  Google Scholar 

  2. Yu, X. W.; Ye, S. Y. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J. Power Sources 2007, 172, 133–144.

    Article  CAS  Google Scholar 

  3. Sopian, K.; Wan Daud, W. R. Challenges and future developments in proton exchange membrane fuel cells. Renew. Energy 2006, 31, 719–727.

    Article  CAS  Google Scholar 

  4. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    Article  CAS  Google Scholar 

  5. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    Article  CAS  Google Scholar 

  6. Sasaki, K.; Naohara, H.; Choi, Y.; Cai, Y.; Chen, W. F.; Liu, P.; Adzic, R. R. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 2012, 3, 1115.

    Article  Google Scholar 

  7. Qi, Z. Y.; Xiao, C. X.; Liu, C.; Goh, T. W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y. C.; Li, X. L.; Curtiss, L. A.; Huang, W. Y. Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction. J. Am. Chem. Soc. 2017, 139, 4762–4768.

    Article  CAS  Google Scholar 

  8. Zhu, J.; Zheng, X.; Wang, J.; Wu, Z. X.; Han, L. L.; Lin, R. Q.; Xin, H. L.; Wang, D. L. Structurally ordered Pt-Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation. J. Mater. Chem. A 2015, 3, 22129–22135.

    Article  CAS  Google Scholar 

  9. Porter, N. S.; Wu, H.; Quan, Z. W.; Fang, J. Y. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2013, 46, 1867–1877.

    Article  CAS  Google Scholar 

  10. Wang, Y. J.; Zhao, N. N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.

    Article  CAS  Google Scholar 

  11. Chen, Q. L.; Cao, Z. M.; Du, G. F.; Kuang, Q.; Huang, J.; Xie, Z. X.; Zheng, L. S. Excavated octahedral Pt-Co alloy nanocrystals built with ultrathin nanosheets as superior multifunctional electrocatalysts for energy conversion applications. Nano Energy 2017, 39, 582–589.

    Article  CAS  Google Scholar 

  12. Huang, Y.; Garcia, M.; Habib, S.; Shui, J. L.; Wagner, F. T.; Zhang, J. L.; Jorné, J.; Li, J. C. M. Dealloyed PtCo hollow nanowires with ultrathin wall thicknesses and their catalytic durability for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 16175–16180.

    Article  CAS  Google Scholar 

  13. Zhu, Z. J.; Zhai, Y. L.; Dong, S. J. Facial synthesis of PtM (M = Fe, Co, Cu, Ni) bimetallic alloy nanosponges and their enhanced catalysis for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 16721–16726.

    Article  CAS  Google Scholar 

  14. Chen, Q. L.; Zhang, J. W.; Jia, Y. Y.; Jiang, Z. Y.; Xie, Z. X.; Zheng, L. S. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with upd process and their excellent electrocatalytic performances. Nanoscale 2014, 6, 7019–7024.

    Article  CAS  Google Scholar 

  15. Gan, L.; Rudi, S.; Cui, C. H.; Heggen, M.; Strasser, P. Size-controlled synthesis of sub-10 nm PtNi3 alloy nanoparticles and their unusual volcano-shaped size effect on orr electrocatalysis. Small 2016, 12, 3189–3196.

    Article  CAS  Google Scholar 

  16. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  CAS  Google Scholar 

  17. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    Article  CAS  Google Scholar 

  18. Taniguchi, A.; Akita, T.; Yasuda, K.; Miyazaki, Y. Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation. J. Power Sources 2004, 130, 42–49.

    Article  CAS  Google Scholar 

  19. Iihama, S.; Furukawa, S.; Komatsu, T. Efficient catalytic system for chemoselective hydrogenation of halonitrobenzene to haloaniline using PtZn intermetallic compound. ACS Catal. 2016, 6, 742–746.

    Article  CAS  Google Scholar 

  20. Wang, W.; Lei, B.; Guo, S. J. Engineering multimetallic nanocrystals for highly efficient oxygen reduction catalysts. Adv. Energy Mater. 2016, 6, 1600236.

    Article  Google Scholar 

  21. Ji, X. L.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J. J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem. 2010, 2, 286–293.

    Article  CAS  Google Scholar 

  22. Wang, J.; Wu, H. H.; Gao, D. F.; Miao, S.; Wang, G. X.; Bao, X. H. Highdensity iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery. Nano Energy 2015, 13, 387–396.

    Article  CAS  Google Scholar 

  23. Deng, J.; Ren, P. J.; Deng, D. H.; Yu, L.; Yang, F.; Bao, X. H. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 1919–1923.

    Article  CAS  Google Scholar 

  24. Chen, X. Q.; Yu, L.; Wang, S. H.; Deng, D. H.; Bao, X. H. Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy 2017, 32, 353–358.

    Article  CAS  Google Scholar 

  25. Li, H. B.; Xiao, J. P.; Fu, Q.; Bao, X. H. Confined catalysis under twodimensional materials. Proc. Natl. Acad. Sci. USA 2017, 114, 5930–5934.

    Article  CAS  Google Scholar 

  26. Deng, J.; Deng, D. H.; Bao, X. H. Robust catalysis on 2D materials encapsulating metals: Concept, application, and perspective. Adv. Mater. 2017, 29, 1606967.

    Article  Google Scholar 

  27. Cui, T. T.; Dong, J. H.; Pan, X. L.; Yu, T.; Fu, Q.; Bao, X. H. Enhanced hydrogen evolution reaction over molybdenum carbide nanoparticles confined inside single-walled carbon nanotubes. J. Energy Chem. 2019, 28, 123–127.

    Article  Google Scholar 

  28. Xiao, M. L.; Zhu, J. B.; Feng, L. G.; Liu, C. P.; Xing, W. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521–2527.

    Article  CAS  Google Scholar 

  29. Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129.

    Article  CAS  Google Scholar 

  30. Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100–2104.

    Article  CAS  Google Scholar 

  31. Zhao, Z. H.; Li, M. T.; Zhang, L. P.; Dai, L. M.; Xia, Z. H. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries. Adv. Mater. 2015, 27, 6834–6840.

    Article  CAS  Google Scholar 

  32. Du, N. N.; Wang, C. M.; Long, R.; Xiong, Y. J. N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction. Nano Res. 2017, 10, 3228–3237.

    Article  CAS  Google Scholar 

  33. Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K.; He, Y. H.; Karakalos, S.; Zhang, H. G.; Spendelow, J. S.; Su, D.; Wu, G. Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. Nano Lett. 2018, 18, 4163–4171.

    Article  CAS  Google Scholar 

  34. Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

    Article  CAS  Google Scholar 

  35. Li, F. L.; Shao, Q.; Huang, X. Q.; Lang, J. P. Nanoscale trimetallic metalorganic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1888–1892.

    Article  CAS  Google Scholar 

  36. Shao, Q.; Yang, J.; Huang, X. Q. The design of water oxidation electrocatalysts from nanoscale metal-organic frameworks. Chem. -Eur. J. 2018, 24, 15143–15155.

    Article  CAS  Google Scholar 

  37. Zhang, N.; Shao, Q.; Wang, P. T.; Zhu, X.; Huang, X. Q. Porous Pt-Ni nanowires within in situ generated metal-organic frameworks for highly chemoselective cinnamaldehyde hydrogenation. Small 2018, 14, e1704318.

    Article  Google Scholar 

  38. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metalorganic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

    Article  CAS  Google Scholar 

  39. Qi, Z. Y.; Pei, Y. C.; Goh, T. W.; Wang, Z. Y.; Li, X. L.; Lowe, M.; Maligal-Ganesh, R. V.; Huang, W. Y. Conversion of confined metal@ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis. Nano Res. 2018, 11, 3469–3479.

    Article  CAS  Google Scholar 

  40. Deng, J.; Yu, L.; Deng, D. H.; Chen, X. Q.; Yang, F.; Bao, X. H. Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls. J. Mater. Chem. A 2013, 1, 14868–14873.

    Article  CAS  Google Scholar 

  41. Guinea, F. Charge distribution and screening in layered graphene systems. Phys. Rev. B 2007, 75, 235433.

    Article  Google Scholar 

  42. Chen, H. A.; Hsin, C. L.; Huang, Y. T.; Tang, M. L.; Dhuey, S.; Cabrini, S.; Wu, W. W.; Leone, S. R. Measurement of interlayer screening length of layered graphene by plasmonic nanostructure resonances. J. Phys. Chem. C 2013, 117, 22211–22217.

    Article  CAS  Google Scholar 

  43. Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.

    Article  CAS  Google Scholar 

  44. Wu, G.; Mack, N. H.; Gao, W.; Ma, S. G.; Zhong, R. Q.; Han, J. T.; Baldwin, J. K.; Zelenay, P. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes. ACS Nano 2012, 6, 9764–9776.

    Article  CAS  Google Scholar 

  45. Li, Q.; Xu, P.; Gao, W.; Ma, S. G.; Zhang, G. Q.; Cao, R. G.; Cho, J.; Wang, H. L.; Wu, G. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in li-O2 batteries. Adv. Mater. 2014, 26, 1378–1386.

    Article  Google Scholar 

  46. Zheng, F. C.; Yang, Y.; Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261.

    Article  CAS  Google Scholar 

  47. Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

    Article  CAS  Google Scholar 

  48. Shi, P. C.; Yi, J. D.; Liu, T. T.; Li, L.; Zhang, L. J.; Sun, C. F.; Wang, Y. B.; Huang, Y. B.; Cao, R. Hierarchically porous nitrogen-doped carbon nanotubes derived from core-shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A 2017, 5, 12322–12329.

    Article  CAS  Google Scholar 

  49. Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru, S. P.; Popov, B. N. O2 reduction on graphite and nitrogen-doped graphite: Experiment and theory. J. Phys. Chem. B 2006, 110, 1787–1793.

    Article  CAS  Google Scholar 

  50. Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; Xie, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

    Article  CAS  Google Scholar 

  51. Miura, A.; Wang, H. S.; Leonard, B. M.; Abruña, H. D.; DiSalvo, F. J. Synthesis of intermetallic PtZn nanoparticles by reaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts. Chem. Mater. 2009, 21, 2661–2667.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2017YFA0206500 and 2017YFA0206801), the National Basic Research Program of China (No. 2015CB932301), and the National Natural Science Foundation of China (Nos. 21671163 and 21721001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Kuang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Li, H., Ye, X. et al. N-doped carbon shell encapsulated PtZn intermetallic nanoparticles as highly efficient catalysts for fuel cells. Nano Res. 12, 2490–2497 (2019). https://doi.org/10.1007/s12274-019-2473-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2473-x

Keywords

Navigation