Skip to main content
Log in

In situ fabrication of organic electrochemical transistors on a microfluidic chip

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Microfluid chips integrating with organic electrochemical transistors (OECTs) are useful for manufacturing biosensors with high throughput and large-scale analyses. We report here the utilization of alternating current (AC) electrodeposition to fabricate OECTs in situ on a microfluid chip. With this method, the organic semiconductor (OS) layer with a channel length of 8 ώm was readily prepared without requiring the post-bonding process in the conventional construction of microfluidic chips. Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/graphene quantum dots (PEDOT:PSS/GQDs) composites with different morphologies, such as microfilms, nanodendrites and nanowires were electropolymerized. The mass transfer process of the electropolymerization reaction was evidenced to be diffusion limited. Morphologies, growth directions, and chemical structures of OS layers could be tuned by the amplitude and the frequency of the AC voltage. Transfer and output characteristic curves of OECTs were measured on the microfluidic chip. The maximum transconductance, on/off current ratio and threshold voltage measured in the experiment was 1.58 mS, 246, and 0.120 V, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.

    Article  Google Scholar 

  2. Tang, H.; Yan, F.; Lin, P.; Xu, J. B.; Chan, H. L. W. Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv. Funct. Mater. 2011, 21, 2264–2272.

    Article  Google Scholar 

  3. Tang, H.; Lin, P.; Chan, H. L. W.; Yan, F. Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens. Bioelectron. 2011, 26, 4559–4563.

    Article  Google Scholar 

  4. Lin, P.; Luo, X. T.; Hsing, I. M.; Yan, F. Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv. Mater. 2011, 23, 4035–4040.

    Article  Google Scholar 

  5. Hempel, F.; Law, J. K. Y.; Nguyen, T. C.; Munief, W.; Lu, X. L.; Pachauri, V.; Susloparova, A.; Vu, X. T.; Ingebrandt, S. PEDOT:PSS organic electrochemical transistor arrays for extracellular electrophysiological sensing of cardiac cells. Biosens. Bioelectron. 2017, 93, 132–138.

    Article  Google Scholar 

  6. Lin, P.; Yan, F.; Yu, J. J.; Chan, H. L. W.; Yang, M. The application of organic electrochemical transistors in cell-based biosensors. Adv. Mater. 2010, 22, 3655–3660.

    Article  Google Scholar 

  7. Gu, X.; Yao, C. L.; Liu, Y.; Hsing, I. M. 16-channel organic electrochemical transistor array for in vitro conduction mapping of cardiac action potential. Adv. Healthc. Mater. 2016, 5, 2345–2351.

    Article  Google Scholar 

  8. Liang, Y. Y.; Ernst, M.; Brings, F.; Kireev, D.; Maybeck, V.; Offenhäusser, A.; Mayer, D. High performance flexible organic electrochemical transistors for monitoring cardiac action potential. Adv. Healthc. Mater. 2018, 7, 1800304.

    Article  Google Scholar 

  9. White, S. P.; Dorfman, K. D.; Frisbie, C. D. Label-free DNA sensing platform with low-voltage electrolyte-gated transistors. Anal. Chem. 2015, 87, 1861–1866.

    Article  Google Scholar 

  10. Parlak, O.; Keene, S. T.; Marais, A.; Curto, V. F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018, 4, 2904.

  11. Curto, V. F.; Marchiori, B.; Hama, A.; Pappa, A. M.; Ferro, M. P.; Braendlein, M.; Rivnay, J.; Fiocchi, M.; Malliaras, G. G.; Ramuz, M. et al. Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring. Microsyst. Nanoeng. 2017, 3, 17028.

    Article  Google Scholar 

  12. Liao, Z. R.; Wang, J. F.; Zhang, P. J.; Zhang, Y.; Miao, Y. F.; Gao, S. M.; Deng, Y. L.; Geng, L. N. Recent advances in microfluidic chip integrated electronic biosensors for multiplexed detection. Biosens. Bioelectron. 2018, 121, 272–280.

    Article  Google Scholar 

  13. Kim, S. H.; Hong, K.; Xie, W.; Lee, K. H.; Zhang, S. P.; Lodge, T. P.; Frisbie, C. D. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 2013, 25, 1822–1846.

    Article  Google Scholar 

  14. Friedlein, J. T.; McLeod, R. R.; Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 2018, 63, 398–414.

    Article  Google Scholar 

  15. Zhang, M.; Lin, P.; Yang, M.; Yan, F. Fabrication of organic electrochemical transistor arrays for biosensing. Biochim. Biophys. Acta 2013, 1830, 4402–4406.

    Article  Google Scholar 

  16. DeFranco, J. A.; Schmidt, B. S.; Lipson, M.; Malliaras, G. G. Photolithographic patterning of organic electronic materials. Org. Electron. 2006, 7, 22–28.

    Article  Google Scholar 

  17. Sessolo, M.; Khodagholy, D.; Rivnay, J.; Maddalena, F.; Gleyzes, M.; Steidl, E.; Buisson, B.; Malliaras, G. G. Easy-to-fabricate conducting polymer microelectrode arrays. Adv. Mater. 2013, 25, 2135–2139.

    Article  Google Scholar 

  18. Curto, V. F.; Ferro, M. P.; Mariani, F.; Scavetta, E.; Owens, R. M. A planar impedance sensor for 3D spheroids. Lab Chip 2018, 18, 933–943.

    Article  Google Scholar 

  19. Pappa, A. M.; Curto, V. F.; Braendlein, M.; Strakosas, X.; Donahue, M. J.; Fiocchi, M.; Malliaras, G. G.; Owens, R. M. Organic transistor arrays integrated with finger-powered microfluidics for multianalyte saliva testing. Adv. Healthc. Mater. 2016, 5, 2295–2302.

    Article  Google Scholar 

  20. Guo, X.; Liu, J.; Liu, F. Y.; She, F.; Zheng, Q.; Tang, H.; Ma, M.; Yao, S. Z. Label-free and sensitive sialic acid biosensor based on organic electrochemical transistors. Sens. Actuators B 2017, 240, 1075–1082.

    Article  Google Scholar 

  21. Fonseca, S. M.; Moreira, T.; Jorge Parola, A.; Pinheiro, C.; Laia, C. A. T. PEDOT electrodeposition on oriented mesoporous silica templates for electrochromic devices. Sol. Energy Mater. Sol. Cells 2017, 159, 94–101.

    Article  Google Scholar 

  22. Shi, Y. D.; Zhang, Y.; Tang, K.; Song, Y. B.; Cui, J. W.; Shu, X.; Wang, Y.; Liu, J. Q.; Wu, Y. C. In situ growth of PEDOT/graphene oxide nanostructures with enhanced electrochromic performance. RSC Adv. 2018, 8, 13679–13685.

    Google Scholar 

  23. Demuru, S.; Deligianni, H. Surface PEDOT:nafion coatings for enhanced dopamine, serotonin and adenosine sensing. J. Electrochem. Soc. 2017, 164, G129–G138.

    Article  Google Scholar 

  24. Si, W. M.; Lei, W.; Han, Z.; Hao, Q. L.; Zhang, Y. H.; Xia, M. Z. Selective sensing of catechol and hydroquinone based on poly(3,4-ethylenedioxythiophene)/ nitrogen-doped graphene composites. Sens. Actuator B 2014, 199, 154–160.

    Article  Google Scholar 

  25. Song, J. C.; Noh, H.; Lee, J.; Nah, I. W.; Cho, W. I.; Kim, H. T. In situ coating of poly(3,4-ethylenedioxythiophene) on sulfur cathode for high performance lithium-sulfur batteries. J. Power Sources 2016, 332, 72–78.

    Google Scholar 

  26. Si, W. M.; Lei, W.; Han, Z.; Zhang, Y. H.; Hao, Q. L.; Xia, M. Z. Electrochemical sensing of acetaminophen based on poly(3,4-ethylenedioxythiophene)/graphene oxide composites. Sens. Actuator B 2014, 193, 823–829.

    Article  Google Scholar 

  27. Koizumi, Y.; Shida, N.; Ohira, M.; Nishiyama, H.; Tomita, I.; Inagi, S. Electropolymerization on wireless electrodes towards conducting polymer microfibre networks. Nat. Commun. 2016, 7, 10404.

  28. Yang, X.; Wang, Q.; Fan, J. R.; Zhang, M.; Zhou, Z. Y.; Ji, J. L. Extremely sensitive sers detection through the one-step fabrication of a composite nanostructure of substrate and analyte. ECS Electrochem. Lett. 2015, 4, B17–B20.

    Article  Google Scholar 

  29. Ji, J. L.; Li, P. W.; Sang, S. B.; Zhang, W. D.; Zhou, Z. Y.; Yang, X.; Dong, H. L.; Li, G.; Hu, J. Electrodeposition of Au/Ag bimetallic dendrites assisted by faradaic AC-electroosmosis flow. AIP Adv. 2014, 4, 031329.

    Article  Google Scholar 

  30. Zhang, M.; Yang, X.; Zhou, Z. Y.; Ye, X. Y. Controllable growth of gold nanowires and nanoactuators via high-frequency AC electrodeposition. Electrochem. Commun. 2013, 27, 133–136.

    Article  Google Scholar 

  31. Ji, J. L.; Zhou, Z. Y.; Yang, X.; Zhang, W. D.; Sang, S. B.; Li, P. W. One-dimensional nano-interconnection formation. Small 2014, 9, 3014–3029.

    Article  Google Scholar 

  32. Chen, S.; Hai, X.; Xia, C.; Chen, X. W.; Wang, J. H. Preparation of excitation-independent photoluminescent graphene quantum dots with visible-light excitation/emission for cell imaging. Chem. - Eur. J. 2013, 19, 15918–15923.

    Article  Google Scholar 

  33. Oberhammer, J.; Stemme, G. BCB contact printing for patterned adhesive full-wafer bonded 0-level packages. J. Microelectromech. Syst. 2005, 14, 419–425.

    Article  Google Scholar 

  34. Khodagholy, D.; Rivnay, J.; Sessolo, M.; Gurfinkel, M.; Leleux, P.; Jimison, L. H.; Stavrinidou, E.; Herve, T.; Sanaur, S.; Owens, R. M. et al. High transconductance organic electrochemical transistors. Nat. Commun. 2013, 4, 2133.

  35. Stavrinidou, E.; Leleux, P.; Rajaona, H.; Khodagholy, D.; Rivnay, J.; Lindau, M.; Sanaur, S.; Malliaras, G. G. Direct measurement of ion mobility in a conducting polymer. Adv. Mater. 2013, 25, 4488–4493.

    Article  Google Scholar 

  36. Garreau, S.; Duvail, J. L.; Louarn, G. Spectroelectrochemical studies of poly(3,4-ethylenedioxythiophene) in aqueous medium. Synth. Met. 2001, 125, 325–329.

    Article  Google Scholar 

  37. Heinze, J.; Frontana- Uribe, B. A.; Ludwigs, S. Electrochemistry of conducting polymers-persistent models and new concepts. Chem. Rev. 2010, 11 0, 4724–4771.

    Google Scholar 

  38. Castagnola, V.; Bayon, C.; Descamps, E.; Bergaud, C. Morphology and conductivity of pedot layers produced by different electrochemical routes. Synth. Met. 2014, 189, 7–16.

    Article  Google Scholar 

  39. Randriamahazaka, H.; Noël, V.; Chevrot, C. Nucleation and growth of poly(3,4-ethylenedioxythiophene) in acetonitrile on platinum under potentiostatic conditions. J. Electroanal. Chem. 1999, 472, 103–111.

    Article  Google Scholar 

  40. Heinze, J.; Rasche, A.; Pagels, M.; Geschke, B. On the origin of the so-called nucleation loop during electropolymerization of conducting polymers. J. Phys. Chem. B 2007, 111, 989–997.

    Article  Google Scholar 

  41. Du, X.; Wang, Z. Effects of polymerization potential on the properties of electrosynthesized PEDOT films. Electrochim. Acta 2003, 48, 1713–1717.

    Article  Google Scholar 

  42. Tamburri, E.; Orlanducci, S.; Toschi, F.; Terranova, M. L.; Passeri, D. Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium. Synth. Met. 2009, 159, 406–414.

    Article  Google Scholar 

  43. Tamburri, E.; Guglielmotti, V.; Orlanducci, S.; Terranova, M. L. Structure and I2/I- redox catalytic behaviour of PEDOT-PSS films electropolymerized in aqueous medium: Implications for convenient counter electrodes in DSSC. Inorg. Chim. Acta 2011, 377, 170–176.

    Article  Google Scholar 

  44. Youk, J. H.; Locklin, J.; Xia, C. J.; Park, M. K.; Advincula, R. Preparation of gold nanoparticles from a polyelectrolyte complex solution of terthiophene amphiphiles. Langmuir 2001, 17, 4681–4683.

    Article  Google Scholar 

  45. Schweiss, R.; Lubben, J. F.; Johannsmann, D.; Knoll, W. Electropolymerization of ethylene dioxythiophene (EDOT) in micellar aqueous solutions studied by electrochemical quartz crystal microbalance and surface plasmon resonance. Electrochim. Acta 2005, 50, 2849–2856.

    Article  Google Scholar 

  46. Bobacka, J.; Lewenstam, A.; Ivaska, A. Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J. Electroanal. Chem. 2000, 489, 17–27.

    Article  Google Scholar 

  47. Melato, A. I.; Viana, A. S.; Abrantes, L. M. Different steps in the electrosynthesis of poly(3,4-ethylenedioxythiophene) on platinum. Electrochim. Acta 2008, 54, 590–597.

    Article  Google Scholar 

  48. Orazem, M. E.; Tribollet, B. Electrochemical Impedance Spectroscopy; John Wiley & Sons: New York, 2008.

    Book  Google Scholar 

  49. Thapa, P. S.; Ackerson, B. J.; Grischkowsky, D. R.; Flanders, B. N. Directional growth of metallic and polymeric nanowires. Nanotechnology 2009, 20, 235307.

    Article  Google Scholar 

  50. Botasini, S.; Mendez, E. Limited diffusion and cell dimensions in a micrometer layer of solution: An electrochemical impedance spectroscopy study. ChemElectroChem 2017, 4, 1891–1895.

    Article  Google Scholar 

  51. Scharifker, B. R.; García- Pastoriza, E.; Marino, W. The growth of polypyrrole films on electrodes. J. Electroanal. Chem. 1991, 300, 85–98.

    Article  Google Scholar 

  52. Garfias-García, E.; Romero-Romo, M.; Ramírez-Silva, M. T.; Morales, J.; Palomar-Pardavé, M. Mechanism and kinetics of the electrochemical formation of polypyrrole under forced convection conditions. J. Electroanal. Chem. 2008, 613, 67–79.

    Article  Google Scholar 

  53. Velev, O. D.; Gangwal, S.; Petsev, D. N. Particle-localized AC and DC manipulation and electrokinetics. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2009, 105, 213–246.

    Article  Google Scholar 

  54. Velev, O. D.; Bhatt, K. H. On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2006, 2, 738–750.

    Article  Google Scholar 

  55. Velev, O. D. Assembly of electrically functional microstructures from colloidal particles. In Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid Particles. Caruso, F., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2004.

    Google Scholar 

  56. Jones, T. B.; Jones, T. B. Electromechanics of Particles; Cambridge University Press: Cambridge, 2005.

    Google Scholar 

  57. Du, Y.; Cui, X.; Li, L.; Tian, H.; Yu, W. X.; Zhou, Z. X. Dielectric properties of DMSO-doped-PEDOT:PSS at THz frequencies. Phys. Status Solidi B 2017, 255, 1700547.

    Article  Google Scholar 

  58. Randriamahazaka, H.; Sini, G.; Tran Van, F. Electrodeposition mechanisms and electrochemical behavior of poly(3,4-ethylenedithiathiophene). J. Phys. Chem. C 2007, 111, 4553–4560.

    Article  Google Scholar 

  59. Gamburg, Y. D.; Zangari, G. Theory and Practice of Metal Electrodeposition; Springer: New York, 2011.

    Book  Google Scholar 

  60. Sakmeche, N.; Aeiyach, S.; Aaron, J. J.; Jouini, M.; Lacroix, J. C.; Lacaze, P. C. Improvement of the electrosynthesis and physicochemical properties of poly(3,4-ethylenedioxythiophene) using a sodium dodecyl sulfate micellar aqueous medium. Langmuir 1999, 15, 2566–2574.

    Article  Google Scholar 

  61. Garreau, S.; Louam, G.; Lefrant, S.; Buisson, J. P.; Froyer, G. Optical study and vibrational analysis of the poly (3,4-ethylenedioxythiophene) (PEDT). Synth. Met. 1999, 101, 312–313.

    Article  Google Scholar 

  62. Akimoto, M.; Furukawa, Y.; Takeuchi, H.; Harada, I.; Soma, Y.; Soma, M. Correlation between vibrational spectra and electrical conductivity of polythiophene. Synth. Met. 1986, 15, 353–360.

    Article  Google Scholar 

  63. Alam, M. M.; Wang, J.; Guo, Y. Y.; Lee, S. P.; Tseng, H. S. Electrolyte-gated transistors based on conducting polymer nanowire junction arrays. J. Phys. Chem. B 2005, 109, 12777–12784.

    Article  Google Scholar 

  64. Bernards, D. A.; Malliaras, G. G. Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 2007, 17, 3538–3544.

    Article  Google Scholar 

  65. Inal, S.; Malliaras, G. G.; Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 2017, 8, 1767.

  66. Pathak, C. S.; Singh, J. P.; Singh, R. Preparation of novel graphene-PEDOT:PSS nanocomposite films and fabrication of heterojunction diodes with n-Si. Chem. Phys. Lett. 2018, 694, 75–81.

    Article  Google Scholar 

  67. Khodagholy, D.; Doublet, T.; Quilichini, P.; Gurfinkel, M.; Leleux, P.; Ghestem, A.; Ismailova, E.; Hervé, T.; Sanaur, S.; Bernard, C. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 2013, 4, 1575.

  68. Kepić, D. P.; Marković, Z. M.; Jovanović, S. P.; Peruško, D. B.; Budimir, M. D.; Holclajtner-Antunović, I. D.; Pavlović, V. B.; Marković, B. M. T. Preparation of PEDOT: PSS thin films doped with graphene and graphene quantum dots. Synth. Met. 2014, 198, 150–154.

    Article  Google Scholar 

  69. Tarabella, G.; Balducci, A. G.; Coppedè, N.; Marasso, S.; D'Angelo, P.; Barbieri, S.; Cocuzza, M.; Colombo, P.; Sonvico, F.; Mosca, R. et al. Liposome sensing and monitoring by organic electrochemical transistors integrated in microfluidics. Biochim. Biophys. Acta 2013, 1830, 4374–4380.

    Article  Google Scholar 

  70. Kim, S. H.; Hong, K.; Lee, K. H.; Frisbie, C. D. Performance and stability of aerosol-jet-printed electrolyte-gated transistors based on poly(3-hexylthiophene). ACS Appl. Mater. Interfaces 2013, 5, 6580–6585.

    Article  Google Scholar 

  71. Louet, C.; Cantin, S.; Dudon, J. P.; Aubert, P. H.; Vidal, F.; Chevrot, C. A comprehensive study of infrared reflectivity of poly(3,4-ethylenedioxythiophene) model layers with different morphologies and conductivities. Sol. Energy Mater. Sol. Cells 2015, 143, 141–151.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51705354, 51622507, and 61671271); Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (Nos. 183290224-S and 201802029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengbo Sang or Yang Shu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, J., Li, M., Chen, Z. et al. In situ fabrication of organic electrochemical transistors on a microfluidic chip. Nano Res. 12, 1943–1951 (2019). https://doi.org/10.1007/s12274-019-2462-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2462-0

Keywords

Navigation