Skip to main content
Log in

Vesicular Li3V2(PO4)3/C hollow mesoporous microspheres as an efficient cathode material for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Vesicular lithium vanadium phosphate/carbon hollow mesoporous microspheres were fabricated using a facile polyvinylpyrrolidone-assisted aerosol-spray-assisted method and subsequent heat-treatment. While changing the content of polyvinylpyrrolidone, we found that carbon content was adjustable on the surface of lithium vanadium phosphate. By optimizing the carbon content among the composites, the electrochemical performance can be enhanced significantly. The results of electrochemical performance tests suggested that the samples exhibited good cycle performance and high discharge capability in the voltages between 3.0–4.8 V. The observed excellent electrochemical performances could be attributed to the proper content of carbon coating and the vesicular hollow mesoporous microsphere structure, increasing the transmission rate of lithium ions and reducing the structural change during charging and discharging effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, W. D.; Song, B. H.; Manthiram, A. High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 2017, 46, 3006–3059.

    Article  Google Scholar 

  2. Liu, C. F.; Masse, R.; Nan, X. H.; Cao, G. Z. A promising cathode for Li-ion batteries: Li3V2(PO4)3. Energy Storage Mater. 2016, 4, 15–58.

    Article  Google Scholar 

  3. Tan, H. T.; Xu, L. H.; Geng, H. B.; Rui, X. H.; Li, C. C.; Huang, S. M. Nanostructured Li3V2(PO4)3 cathodes. Small 2018, 14, 1800567.

    Article  Google Scholar 

  4. Chen, L.; Yan, B.; Xu, J.; Wang, C. G.; Chao, Y. M.; Jiang, X. F.; Yang, G. Bicontinuous structure of Li3V2(PO4)3 clustered via carbon nanofiber as high-performance cathode material of Li-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 13934–13943.

    Article  Google Scholar 

  5. Li, Y. H.; Xiang, K. X.; Zhou, W.; Zhu, Y. R.; Xiao, L.; Chen, X. H.; Chen, H. Li3V2(PO4)3/C composite with hollow coaxial structure for high-capacity and high-rate performance in lithium-ion batteries. Mater. Lett. 2018, 216, 46–49.

    Article  Google Scholar 

  6. Wei, Q. L.; Xu, Y. A.; Li, Q. D.; Tan, S. S.; Ren, W. H.; An, Q. Y.; Mai, L. Q. Novel layered Li3V2(PO4)3/r GO&C sheets as high-rate and long-life lithium ion battery cathodes. Chem. Commun. 2016, 52, 8730–8732.

    Article  Google Scholar 

  7. Cheng, B.; Zhang, X. D.; Ma, X. H.; Wen, J. W.; Yu, Y.; Chen, C. H. Nano-Li3V2(PO4)3 enwrapped into reduced graphene oxide sheets for lithium-ion batteries. J. Power Sources 2014, 265, 104–109.

    Article  Google Scholar 

  8. Rui, X. H.; Sim, D.; Wong, K.; Zhu, J. X.; Liu, W. L.; Xu, C.; Tan, H. T.; Xiao, N.; Hng, H. H.; Lim, T. M. et al. Li3V2(PO4)3 nanocrystals embedded in a nanoporous carbon matrix supported on reduced graphene oxide sheets: Binder-free and high rate cathode material for lithium-ion batteries. J. Power Sources 2012, 214, 171–177.

    Article  Google Scholar 

  9. Niu, C. J.; Meng, J. S.; Wang, X. P.; Han, C. H.; Yan, M. Y.; Zhao, K. N.; Xu, X. M.; Ren, W. H.; Zhao, Y. L.; Xu, L. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 2015, 6, 7402.

    Article  Google Scholar 

  10. Cheng, Y.; Ni, X.; Feng, K.; Zhang, H. Z.; Li, X. F.; Zhang, H. M. Phase-change enabled 2D Li3V2(PO4)3/C submicron sheets for advanced lithium-ion batteries. J. Power Sources 2016, 326, 203–210.

    Article  Google Scholar 

  11. Mao, W. F.; Fu, Y. B.; Zhao, H.; Ai, G.; Dai, Y. L.; Meng, D. C.; Zhang, X. H.; Qu, D. Y.; Liu, G.; Battaglia, V. S. et al. Rational design and facial synthesis of Li3V2(PO4)3@C nanocomposites using carbon with different dimensions for ultrahigh-rate lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 12057–12066.

    Article  Google Scholar 

  12. Li, H. Q.; Zhou, H. S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.

    Article  Google Scholar 

  13. Secchiaroli, M.; Nobili, F.; Tossici, R.; Giuli, G.; Marassi, R. Synthesis and electrochemical characterization of high rate capability Li3V2(PO4)3/C prepared by using poly (acrylic acid) and D-(+)-glucose as carbon sources. J. Power Sources 2015, 275, 792–798.

    Article  Google Scholar 

  14. Wang, L. P.; Bai, J. M.; Gao, P.; Wang, X. Y.; Looney, J. P.; Wang, F. Structure tracking aided design and synthesis of Li3V2(PO4)3 nanocrystals as high-power cathodes for lithium ion batteries. Chem. Mater. 2015, 27, 5712–5718.

    Article  Google Scholar 

  15. Nan, X. H.; Zhang, C. K.; Liu, C. F.; Liu, M. M.; Wang, Z. L.; Cao, G. Z. Highly efficient storage of pulse energy produced by triboelectric nano-generator in Li3V2(PO4)3/C cathode Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 862–870.

    Article  Google Scholar 

  16. Yan, B.; Chen, L.; Wang, T.; Xu, J.; Wang, H. Y.; Yang, G. Preparation and characterization of Li3V2(PO4)3 grown on carbon nanofiber as cathode material for lithium-ion batteries. Electrochim. Acta 2015, 176, 1358–1363.

    Article  Google Scholar 

  17. Naoi, K.; Kisu, K.; Iwama, E.; Sato, Y.; Shinoda, M.; Okita, N.; Naoi, W. Ultrafast cathode characteristics of nanocrystalline-Li3V2(PO4)3/carbon nanofiber composites. J. Eelectrochem. Soc. 2015, 162, A827–A833.

    Article  Google Scholar 

  18. Liang, S. Q.; Tan, Q. G.; Xiong, W.; Tang, Y.; Tan, X. P.; Huang, L. J.; Pan, A. Q.; Cao, G. Z. Carbon wrapped hierarchical Li3V2(PO4)3 microspheres for high performance lithium ion batteries. Sci. Rep. 2016, 6, 33682.

    Article  Google Scholar 

  19. Wang, Z. Y.; He, W.; Zhang, X. D.; Yue, Y. Z.; Liu, J. H.; Zhang, C. J.; Fang, L. Y. Multilevel structures of Li3V2(PO4)3/phosphorus-doped carbon nanocomposites derived from hybrid V-MOFs for long-life and cheap lithium ion battery cathodes. J. Power Sources 2017, 366, 9–17.

    Article  Google Scholar 

  20. Yu, L.; Hu, H.; Wu, H. B.; Lou, X. W. Complex hollow nanostructures: Synthesis and energy-related applications. Adv. Mater. 2017, 29, 1604563.

    Article  Google Scholar 

  21. Li, D. L.; Tian, M.; Xie, R.; Li, Q.; Fan, X. Y.; Gou, L.; Zhao, P.; Ma, S. L.; Shi, Y. X.; Yong, H. T. H. Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries. Nanoscale 2014, 6, 3302–3308.

    Article  Google Scholar 

  22. Kuai, L.; Geng, J.; Chen, C. Y.; Kan, E. J.; Liu, Y. D.; Wang, Q.; Geng, B. Y. A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem., Int. Ed. 2014, 53, 7547–7551.

    Article  Google Scholar 

  23. Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815–3822.

    Article  Google Scholar 

  24. Wang, W. H.; Kuai, L.; Cao, W.; Huttula, M.; Ollikkala, S.; Ahopelto, T.; Honkanen, A. P.; Huotari, S.; Yu, M. K.; Geng, B. Y. Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)- and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew. Chem., Int. Ed. 2017, 56, 14977–14981.

    Article  Google Scholar 

  25. Kuai, L.; Kan, E. J.; Cao, W.; Huttula, M.; Ollikkala, S.; Ahopelto, T.; Honkanen, A. P.; Huotari, S.; Wang, W. H.; Geng, B. Y. Mesoporous LaMnO3+δ perovskite from spray-pyrolysis with superior performance for oxygen reduction reaction and Zn-air battery. Nano Energy 2018, 43, 81–90.

    Article  Google Scholar 

  26. Ding, X. K.; Zhang, L. L.; Yang, X. L.; Fang, H.; Zhou, Y. X.; Wang, J. Q.; Ma, D. Anthracite-derived dual-phase carbon-coated Li3V2(PO4)3 as high-performance cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 42788–42796.

    Article  Google Scholar 

  27. Zhang, L.; Hu, L.; Fei, L. F.; Qi, J. Q.; Hu, Y. M.; Wang, Y.; Gu, H. S. Large-scale synthesis of Li3V2(PO4)3@C composites by a modified carbothermal reduction method as cathode material for lithium-ion batteries. RSC Adv. 2017, 7, 25422–25428.

    Article  Google Scholar 

  28. Jiang, S. S. Fabrication and characterization of plate-like Li3V2(PO4)3@C as cathode material for energy storage. Solid State Ionics 2018, 325, 128–132.

    Article  Google Scholar 

  29. Zhang, X. F.; Kühnel, R. S.; Hu, H. T.; Eder, D.; Balducci, A. Going nano with protic ionic liquids-the synthesis of carbon coated Li3V2(PO4)3 nanoparticles encapsulated in a carbon matrix for high power lithium-ion batteries. Nano Energy 2015, 12, 207–214.

    Article  Google Scholar 

  30. Zhu, X. J.; Yan, Z.; Wu, W. Y.; Zeng, W. C.; Du, Y. X.; Zhong, Y.; Zhai, H. D.; Ji, H. X.; Zhu, Y. W. Manipulating size of Li3V2(PO4)3 with reduced graphene oxide: Towards high-performance composite cathode for lithium ion batteries. Sci. Rep. 2014, 4, 5768.

    Article  Google Scholar 

  31. Jiang, Y.; Xu, W. W.; Chen, D. D.; Jiao, Z.; Zhang, H. J.; Ma, Q. L.; Cai, X. H.; Zhao, B.; Chu, Y. L. Graphene modified Li3V2(PO4)3 as a high-performance cathode material for lithium ion batteries. Electrochim. Acta 2012, 85, 377–383.

    Article  Google Scholar 

  32. Rai, A. K.; Thi, T. V.; Gim, J.; Kim, S.; Kim, J. Li3V2(PO4)3/graphene nanocomposite as a high performance cathode material for lithium ion battery. Ceram. Int. 2015, 41, 389–396.

    Article  Google Scholar 

  33. Wang, S. L.; Zhang, Z. X.; Deb, A.; Yang, C. C.; Yang, L.; Hirano, S. I. Nanostructured Li3V2(PO4)3/C composite as high-rate and long-life cathode material for lithium ion batteries. Electrochim. Acta 2014, 143, 297–304.

    Article  Google Scholar 

  34. Yang, M. Z.; Ren, M. M.; Zhu, W. Y.; Liu, W. L.; Zhu, C. F. Li3V2(PO4)3/ graphene nanocomposites with superior cycling performance as cathode materials for lithium ion batteries. Electrochim. Acta 2015, 182, 1046–1052.

    Article  Google Scholar 

  35. Hao, S. J.; Zhang, B. W.; Feng, J. Y.; Liu, Y. Y.; Ball, S.; Pan, J. S.; Srinivasan, M.; Huang. Y. Z. Nanoscale ion intermixing induced activation of Fe2O3/MnO2 composites for application in lithium ion batteries. J. Mater. Chem. A 2017, 5, 8510–8518.

    Article  Google Scholar 

  36. Sun, P. P.; Zhao, X. Y.; Chen, R. P.; Chen, T.; Ma, L. B.; Fan, Q.; Lu, H. L.; Hu, Y.; Tie, Z. X.; Jin, Z. et al. Li3V2(PO4)3 encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries. Nanoscale 2016, 8, 7408–7415.

    Article  Google Scholar 

  37. Saravanan, K.; Mason, C. W.; Rudola, A.; Wong, K. H.; Balaya, P. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 2013, 3, 444–450.

    Article  Google Scholar 

  38. Liao, Y. X.; Li, C.; Lou, X. B.; Hu, X. S.; Ning, Y. Q.; Yuan, F. Y.; Chen, B.; Shen, M.; Hu, B. W. Carbon-coated Li3V2(PO4)3 derived from metal-organic framework as cathode for lithium-ion batteries with high stability. Electrochim. Acta 2018, 271, 608–616.

    Article  Google Scholar 

  39. Li, Y. S.; Wang, J.; Zhou, Z. F.; Deng, J. Q.; Yao, Q. R.; Chu, H. L.; Wang, Z. M.; Sun, L. X.; Zhou, H. Y. Large-scale synthesis of porous Li3V2(PO4)3@C/ AB hollow microspheres with interconnected channel as high performance cathodes for lithium-ion batteries. J. Alloys Compd. 2019, 774, 879–886.

    Article  Google Scholar 

  40. Hu, L. H.; Wu, F. Y.; Lin, C. T.; Khlobystov, A. N.; Li, L. J. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 2013, 4, 1687.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21871005 and 21471006), the Recruitment Program for Leading Talent Team of Anhui Province, the Program for Innovative Research Team of Anhui Education Committee, the Research Foundation for Science and Technology Leaders and Candidates of Anhui Province, the programs for Science and Technology Development of Anhui Province (No. 1501021019), and Anhui Normal University talent training program (No. 2014rcpy12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyou Geng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Du, H., Yu, M. et al. Vesicular Li3V2(PO4)3/C hollow mesoporous microspheres as an efficient cathode material for lithium-ion batteries. Nano Res. 12, 1937–1942 (2019). https://doi.org/10.1007/s12274-019-2461-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2461-1

Keywords

Navigation