Skip to main content
Log in

All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aybrid tribo/piezoelectric nanogenerators (HTPENG) have been proven to be highly efficient and versatile as far as the collection and conversion of ambient energy are concerned, and the introduction of flexible and green materials is a key step for their potential applications. Here, we developed a HTPENG by using nitrocellulose nanofibril paper as the triboelectric layer and BaTiO3/MWCNT@bacterial cellulose paper as the piezoelectric layer. The output of the triboelelctric paper has considerable performance as fluorinated ethylene propylene, and the output of piezoelectric paper is more than ten times higher than the BTO/polydimethylsiloxane structure. The integrated outputs of the sandwich structured HTPENG are 18 V and 1.6 µA·cm−2, which are capable of lighting up three LED bulbs and charging a 1 µF capacitor to 2.5 V in 80 s. In addition, the voltage signal generated by the HTPENG in contact-separation mode can be used for dynamic pressure detection. The linear range of dynamic pressure is from 0.5 to 3 N·cm−2 with a high sensitivity of 8.276 V·cm2 N−1 and a detection limit of 0.2 N·cm−2. This work provides new insights into the design and application of cellulose-based hybrid nanogenerators with high flexibility and simple structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, L.; Tang, W.; Deng, C. R.; Chen, B. D.; Han, K.; Zhong, W.; Wang, Z. L. Self-powered versatile shoes based on hybrid nanogenerators. Nano Res. 2018, 11, 3972–3978.

    Article  Google Scholar 

  2. Sun, C. L.; Shi, J.; Bayerl, D. J.; Wang, X. D. PVDF microbelts for harvesting energy from respiration. Energy Environ. Sci. 2011, 4, 4508–4512.

    Article  Google Scholar 

  3. Yang, J.; Chen, J.; Liu, Y.; Yang, W. Q.; Su, Y. J.; Wang, Z. L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014, 8, 2649–2657.

    Article  Google Scholar 

  4. Pan, L.; Wang, J. Y.; Wang, P. H.; Gao, R. J.; Wang, Y. C.; Zhang, X. W.; Zou, J. J.; Wang, Z. L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062–4073.

    Article  Google Scholar 

  5. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  Google Scholar 

  6. Jenkins, K.; Kelly, S.; Nguyen, V.; Wu, Y.; Yang, R. S. Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators. Nano Energy 2018, 51, 317–323.

    Article  Google Scholar 

  7. Guo, H. Y.; Chen, J.; Tian, L.; Leng, Q.; Xi, Y.; Hu, C. G. Airflow-induced triboelectric nanogenerator as a self-powered sensor for detecting humidity and airflow rate. ACS Appl. Mater. Interfaces 2014, 6, 17184–17189.

    Article  Google Scholar 

  8. Han, C. B.; Zhang, C.; Tang, W.; Li, X. H.; Wang, Z. L. High power triboelectric nanogenerator based on printed circuit board (PCB) technology. Nano Res. 2015, 8, 722–730.

    Article  Google Scholar 

  9. Soin, N.; Zhao, P. F.; Prashanthi, K.; Chen, J. K.; Ding, P.; Zhou, E. P.; Shah, T.; Ray, S. C.; Tsonos, C.; Thundat, T. et al. High performance triboelectric nanogenerators based on phase-inversion piezoelectric membranes of poly(vinylidene fluoride)-zinc stannate (PVDF-ZnSnO3) and polyamide-6 (PA6). Nano Energy 2016, 30, 470–480.

    Article  Google Scholar 

  10. Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.

    Article  Google Scholar 

  11. Yuan, Z. Q.; Zhou, T.; Yin, Y. Y.; Cao, R.; Li, C. J.; Wang, Z. L. Transparent and flexible triboelectric sensing array for touch security applications. ACS Nano 2017, 11, 8364–8369.

    Article  Google Scholar 

  12. Zhu, G.; Yang, R. S.; Wang, S. H.; Wang, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010, 10, 3151–3155.

    Article  Google Scholar 

  13. Zhang, L. M.; Han, C. B.; Jiang, T.; Zhou, T.; Li, X. H.; Zhang, C.; Wang, Z. L. Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy. Nano Energy 2016, 22, 87–94.

    Article  Google Scholar 

  14. Pang, Y. K.; Li, X. H.; Chen, M. X.; Han, C. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerators as a self-powered 3D acceleration sensor. ACS Appl. Mater. Interfaces 2015, 7, 19076–19082.

    Article  Google Scholar 

  15. Dhakar, L.; Tay, F. E. H.; Lee, C. Investigation of contact electrification based broadband energy harvesting mechanism using elastic PDMS microstructures. J. Micromech. Microeng. 2014, 24, 104002.

    Article  Google Scholar 

  16. Zhang, X. S.; Han, M. D.; Wang, R. X.; Zhu, F. Y.; Li, Z. H.; Wang, W.; Zhang, H. X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.

    Article  Google Scholar 

  17. Xu, X.; Potié, A.; Songmuang, R.; Lee, J. W.; Bercu, B.; Baron, T.; Salem, B.; Montès, L. An improved AFM cross-sectional method for piezoelectric nanostructures properties investigation: Application to GaN nanowires. Nanotechnology 2011, 22, 105704.

    Article  Google Scholar 

  18. Chang, C.; Tran, V. H.; Wang, J. B.; Fuh, Y. K.; Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731.

    Article  Google Scholar 

  19. Park, K. I.; Lee, M.; Liu, Y.; Moon, S.; Hwang, G. T.; Zhu, G.; Kim, J. E.; Kim, S. O.; Kim, D. K.; Wang, Z. L. et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv. Mater. 2012, 24, 2999–3004.

    Article  Google Scholar 

  20. Yang, Y.; Guo, W. X.; Pradel, K. C.; Zhu, G.; Zhou, Y. S.; Zhang, Y.; Hu, Y. F.; Lin, L.; Wang, Z. L. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833–2838.

    Article  Google Scholar 

  21. Tao, K.; Hu, W.; Xue, B.; Chovan, D.; Brown, N.; Shimon, L. J. W.; Maraba, O.; Cao, Y.; Tofail, S. A. M.; Thompson, D. et al. Bioinspired stable and photoluminescent assemblies for power generation. Adv. Mater. 2019, 31, 1807481.

    Article  Google Scholar 

  22. Yuan, H.; Lei, T. M.; Qin, Y.; Yang, R. S. Flexible electronic skins based on piezoelectric nanogenerators and piezotronics. Nano Energy 2019, 59, 84–90.

    Article  Google Scholar 

  23. Yuan, H.; Lei, T. M.; Qin, Y.; He, J. H.; Yang, R. S. Design and application of piezoelectric biomaterials. J. Phys. D: Appl. Phys. 2019, 52, 194002.

    Article  Google Scholar 

  24. Liu, S. L.; Tao, D. D.; Bai, H. Y.; Liu, X. Y. Cellulose-nanowhisker-templated synthesis of titanium dioxide/cellulose nanomaterials with promising photocatalytic abilities. J. Appl. Polym. Sci. 2012, 126, E282–E290.

    Article  Google Scholar 

  25. Zeng, J.; Li, R.; Liu, S. L.; Zhang, L. N. Fiber-like TiO2 nanomaterials with different crystallinity phases fabricated via a green pathway. ACS Appl. Mater. Interfaces 2011, 3, 2074–2079.

    Article  Google Scholar 

  26. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994.

    Article  Google Scholar 

  27. Zhou, Y. H.; Khan, T. M.; Liu, J. C.; Fuentes-Hernandez, C.; Shim, J. W.; Najafabadi, E.; Youngblood, J. P.; Moon, R. J.; Kippelen, B. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination. Org. Electron. 2014, 15, 661–666.

    Article  Google Scholar 

  28. Yao, C. H.; Hernandez, A.; Yu, Y. H.; Cai, Z. Y.; Wang, X. D. Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 2016, 30, 103–108.

    Article  Google Scholar 

  29. Zhang, L. C.; Sun, X.; Hu, Z.; Yuan, C. C.; Chen, C. H. Rice paper as a separator membrane in lithium-ion batteries. J. Power Sources 2012, 204, 149–154.

    Article  Google Scholar 

  30. Yao, C. H.; Yin, X.; Yu, Y H.; Cai, Z. Y.; Wang, X. D. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 2017, 27: 1700794.

    Article  Google Scholar 

  31. Zhang, G. J.; Liao, Q. L.; Zhang, Z.; Liang, Q. J.; Zhao, Y. L.; Zheng, X.; Zhang, Y. Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose. Adv. Sci. 2016, 3, 1500257

    Article  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the Beijing Municipal Science & Technology Commission, China (Nos. Z171100002017017 and Z181100008818081), the National Key R & D Project from Minister of Science and Technology, China (No. 2016YFA0202702), the National Natural Science Foundation of China (Nos. 51873020, 21575009, 51432005, and Y4YR011001), the “Thousands Talents” program for pioneer researcher and his innovation team, China, the National Postdoctoral Program for Innovative Talents (No. BX20180081), and China Postdoctoral Science Foundation (No. 2019M650604).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Cao, Ning Wang or Zhong Lin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Jie, Y., Shao, LH. et al. All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Res. 12, 1831–1835 (2019). https://doi.org/10.1007/s12274-019-2443-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2443-3

Keywords

Navigation