Skip to main content
Log in

Luminescent single-molecule magnet of metallofullerene DyErScN@Ih-C80

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Magneto-luminescent molecules have significant applications in data storage and quantum computing. However, design of these bi-functional molecules coupled with magnetic behavior and photoluminescence is still challenging. In this work, we report a metallofullerene DyErScN@Ih-C80 exhibiting single-molecule magnet (SMM) behavior and near-infrared emission. For DyErScN@Ih-C80, two functional lanthanide metal ions of Dy3+ (SMM function) and Er3+ (luminescent function) are integrated inside a fullerene cage using a trimetallic nitride template, and its structure has been unambiguously characterized by single-crystal X-ray diffraction. Magnetic measurements revealed that DyErScN@Ih-C80 behaves as a SMM with a blocking temperature up to 9 K resulting from the intramolecular magnetic interaction between Dy3+ and Er3+ ions. Moreover, DyErScN@Ih-C80 exhibits temperature-dependent near-infrared emission around 1.5 μm with multiple splitting peaks from Er3+, which arises from the influence of Dy3+ ion. This study provides a new strategy to synthesize new magneto-luminescent molecule materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ardavan, A.; Rival, O.; Morton, J. J. L.; Blundell, S. J.; Tyryshkin, A. M.; Timco, G. A.; Winpenny, R. E. P. Will spinrelaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 2007, 98, 057201.

    Article  Google Scholar 

  2. Bogani, L.; Wernsdorfer, W. Molecular spintronics using singlemolecule magnets. Nat. Mater. 2008, 7, 179–186.

    Article  Google Scholar 

  3. Aromí, G.; Aguilà, D.; Gamez, P.; Luis, F.; Roubeau, O. Design of magnetic coordination complexes for quantum computing. Chem. Soc. Rev. 2012, 41, 537–546.

    Article  Google Scholar 

  4. Liu, Y. X.; Wang, D. S.; Shi, J. X.; Peng, Q.; Li, Y. D. Magnetic tuning of upconversion luminescence in lanthanidedoped bifunctional nanocrystals. Angew. Chem., Int. Ed. 2013, 52, 4366–4369.

    Article  Google Scholar 

  5. Zhou, N.; Xu, B.; Gan, L.; Zhang, J. P.; Han, J. B.; Zhai, T. Y. Narrowband spectrally selective nearinfrared photodetector based on upconversion nanoparticles used in a 2D hybrid device. J. Mater. Chem. C 2017, 5, 1591–1595.

    Article  Google Scholar 

  6. Bazalova, O.; Kvicalova, M.; Valkova, T.; Slaby, P.; Bartos, P.; Netusil, R.; Tomanova, K.; Braeunig, P.; Lee, H. J.; Sauman, I. et al. Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc. Natl. Acad. Sci. USA 2016, 113, 1660–1665.

    Article  Google Scholar 

  7. Maeda, K.; Henbest, K. B.; Cintolesi, F.; Kuprov, I.; Rodgers, C. T.; Liddell, P. A.; Gust, D.; Timmel, C. R.; Hore, P. J. Chemical compass model of avian magnetoreception. Nature 2008, 453, 387–390.

    Article  Google Scholar 

  8. Long, J.; Guari, Y.; Ferreira, R. A. S.; Carlos, L. D.; Larionova, J. Recent advances in luminescent lanthanide based singlemolecule magnets. Coord. Chem. Rev. 2018, 363, 57–70.

    Article  Google Scholar 

  9. Bi, Y.; Chen, C.; Zhao, Y. F.; Zhang, Y. Q.; Jiang, S. D.; Wang, B. W.; Han, J. B.; Sun, J. L.; Bian, Z. Q.; Wang, Z. M. et al. Thermostability and photoluminescence of dy(III) singlemolecule magnets under a magnetic field. Chem. Sci. 2016, 7, 5020–5031.

    Article  Google Scholar 

  10. Jia, J. H.; Li, Q. W.; Chen, Y. C.; Liu, J. L.; Tong, M. L. Luminescent singlemolecule magnets based on lanthanides: Design strategies, recent advances and magnetoluminescent studies. Coord. Chem. Rev. 2019, 378, 365–381.

    Article  Google Scholar 

  11. Wang, Z. Y.; Izumi, N.; Nakanishi, Y.; Koyama, T.; Sugai, T.; Tange, M.; Okazaki, T.; Shinohara, H. Nearinfrared photoluminescence properties of endohedral mono and dithulium metallofullerenes. ACS Nano 2016, 10, 4282–4287.

    Article  Google Scholar 

  12. Kodama, T.; Ohnishi, M.; Park, W.; Shiga, T.; Park, J.; Shimada, T.; Shinohara, H.; Shiomi, J.; Goodson, K. E. Modulation of thermal and thermoelectric transport in individual carbon nanotubes by fullerene encapsulation. Nat. Mater. 2017, 16, 892–897.

    Article  Google Scholar 

  13. Liu, F. P.; Krylov, D. S.; Spree, L.; Avdoshenko, S. M.; Samoylova, N. A.; Rosenkranz, M.; Kostanyan, A.; Greber, T.; Wolter, A. U. B.; Büchner, B. et al. Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene. Nat. Commun. 2017, 8, 16098.

    Article  Google Scholar 

  14. Westerström, R.; Dreiser, J.; Piamonteze, C.; Muntwiler, M.; Weyeneth, S.; Brune, H.; Rusponi, S.; Nolting, F.; Popov, A.; Yang, S. F. et al. An endohedral singlemolecule magnet with long relaxation times: DySc2N@C80. J. Am. Chem. Soc. 2012, 134, 9840–9843.

    Article  Google Scholar 

  15. Krylov, D. S.; Liu, F.; Avdoshenko, S. M.; Spree, L.; Weise, B.; Waske, A.; Wolter, A. U. B.; Büchner, B.; Popov, A. A. Recordhigh thermal barrier of the relaxation of magnetization in the nitride clusterfullerene Dy2ScN@C80 I h. Chem. Commun. 2017, 53, 7901–7904.

    Article  Google Scholar 

  16. RincónGarcía, L.; Ismael, A. K.; Evangeli, C.; Grace, I.; RubioBollinger, G.; Porfyrakis, K.; Agraït, N.; Lambert, C. J. Molecular design and control of fullerenebased bithermoelectric materials. Nat. Mater. 2016, 15, 289–293.

    Article  Google Scholar 

  17. Wu, B.; Wang, T. S.; Feng, Y. Q.; Zhang, Z. X.; Jiang, L.; Wang, C. R. Molecular magnetic switch for a metallofullerene. Nat. Commun. 2015, 6, 64–68.

    Google Scholar 

  18. Ito, Y.; Okazaki, T.; Okubo, S.; Akachi, M.; Ohno, Y.; Mizutani, T.; Nakamura, T.; Kitaura, R.; Sugai, T.; Shinohara, H. Enhanced 1520 nm photoluminescence from Er3+ ions in dierbiumcarbide metallofullerenes (Er2C2)@C82 (isomers I, II, and III). ACS Nano 2007, 1, 456–462.

    Article  Google Scholar 

  19. Macfarlane, R. M.; Bethune, D. S.; Stevenson, S.; Dorn, H. C. Fluorescence spectroscopy and emission lifetimes of Er3+ in ErxSc3xN@C80 (x = 1–3). Chem. Phys. Lett. 2001, 343, 229–234.

    Article  Google Scholar 

  20. Olmstead, M. M.; de BettencourtDias, A.; Duchamp, J. C.; Stevenson, S.; Dorn, H. C.; Balch, A. L. Isolation and crystallographic characterization of ErSc2N@C80: An endohedral fullerene which crystallizes with remarkable internal order. J. Am. Chem. Soc. 2000, 122, 12220–12226.

    Article  Google Scholar 

  21. Westerström, R.; Dreiser, J.; Piamonteze, C.; Muntwiler, M.; Weyeneth, S.; Krämer, K.; Liu, S. X.; Decurtins, S.; Popov, A.; Yang, S. F. et al. Tunneling, remanence, and frustration in dysprosiumbased endohedral singlemolecule magnets. Phys. Rev. B 2014, 89, 060406.

    Article  Google Scholar 

  22. Dreiser, J.; Westerström, R.; Zhang, Y.; Popov, A. A.; Dunsch, L.; Krämer, K.; Liu, S. X.; Decurtins, S.; Greber, T. The metallofullerene fieldinduced singleion magnet HoSc2N@C80. Chem.–—Eur. J. 2014, 20, 13536–13540.

    Article  Google Scholar 

  23. Chen, Y. C.; Liu, J. L.; Ungur, L.; Liu, J.; Li, Q. W.; Wang, L. F.; Ni, Z. P.; Chibotaru, L. F.; Chen, X. M.; Tong, M. L. Symmetrysupported magnetic blocking at 20 K in pentagonal bipyramidal Dy(III) singleion magnets. J. Am. Chem. Soc. 2016, 138, 2829–2837.

    Article  Google Scholar 

  24. Aquilante, F.; Autschbach, J.; Carlson, R. K.; Chibotaru, L. F.; Delcey, M. G.; De Vico, L.; Fdez. Galván, I.; Ferré, N.; Frutos, L. M.; Gagliardi, L. et al. MOLCAS 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J. Comput. Chem. 2016, 37, 506–541.

    Article  Google Scholar 

  25. Lines, M. E. Orbital angular momentum in the theory of paramagnetic clusters. J. Chem. Phys. 1971, 55, 2977–2984.

    Article  Google Scholar 

  26. Ungur, L.; van den Heuvel, W.; Chibotaru, L. F. Ab initio investigation of the noncollinear magnetic structure and the lowest magnetic excitations in dysprosium triangles. New J. Chem. 2009, 33, 1224–1230.

    Article  Google Scholar 

  27. Chibotaru, L. F.; Ungur, L.; Soncini, A. The origin of nonmagnetic kramers doublets in the ground state of dysprosium triangles: Evidence for a toroidal magnetic moment. Angew. Chem., Int. Ed. 2008, 47, 4126–4129.

    Article  Google Scholar 

  28. Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. Structure, magnetism, and theoretical study of a mixedvalence CoII 3CoIII 4 heptanuclear wheel: Lack of SMM behavior despite negative magnetic anisotropy. J. Am. Chem. Soc. 2008, 130, 12445–12455.

    Article  Google Scholar 

  29. Dantelle, G.; Tiwari, A.; Rahman, R.; Plant, S. R.; Porfyrakis, K.; Mortier, M.; Taylor, R. A.; Briggs, G. A. D. Optical properties of Er3+ in fullerenes and in βPbF2 singlecrystals. Opt. Mater. 2009, 32, 251–256.

    Article  Google Scholar 

  30. Wybourne, B. G. Spectroscopic Properties of Rare Earths; Interscience Publishers: New York, 1965.

    Book  Google Scholar 

  31. Wybourne, B. G.; Smentek, L. Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions; CRC Press: Boca Raton, 2007.

    Book  Google Scholar 

  32. Jones, M. A. G.; Morton, J. J. L.; Taylor, R. A.; Ardavan, A.; Briggs, G. A. D. PL, magnetoPL and PLE of the trimetallic nitride template fullerene Er3N@C80. Phys. Status Solidi B 2006, 243, 3037–3041.

    Article  Google Scholar 

  33. Tiwari, A.; Dantelle, G.; Porfyrakis, K.; Ardavan, A.; Briggs, G. A. D. Temperature-dependent photoluminescence study of ErSc2N@C80 and Er2ScN@C80 fullerenes. Phys. Status Solidi B 2008, 245, 1998–2001.

    Article  Google Scholar 

  34. Jones, M. A. G.; Taylor, R. A.; Ardavan, A.; Porfyrakis, K.; Briggs, G. A. D. Direct optical excitation of a fullereneincarcerated metal ion. Chem. Phys. Lett. 2006, 428, 303–306.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51672281, 61227902, 51832008, and 51772195) and Beijing Natural Science Foundation (No. 2162050). T. S. W. particularly thanks the Youth Innovation Promotion Association of CAS (No. 2015025). The ab initio calculations in this work were supported by Highperformance Computing Platform of Peking University. We thank Dr. Youming Zou (SHMFF, HMFL, CAS) for the EPR measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingwu Wang, Lai Feng, Chunru Wang or Taishan Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, M., Xiong, J., Zhao, C. et al. Luminescent single-molecule magnet of metallofullerene DyErScN@Ih-C80. Nano Res. 12, 1727–1731 (2019). https://doi.org/10.1007/s12274-019-2429-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2429-1

Keywords

Navigation