Skip to main content
Log in

One-nanometer-thick platinum-based nanowires with controllable surface structures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Pt-based ultrathin nanowires (NWs) are considered as one of the most intriguing catalysts for fuel cells. However, the delicate controllability of surface structure of ultrathin NWs to regulate their catalytic performances is still a challenge. Here, two kinds of one-nanometer-thick Pt-based NWs with smooth surfaces (S-NWs) and rough surfaces (R-NWs) are demonstrated, in which the combined use of hexadecyltrimethylammonium bromide and oleylamine plays an essential role, as they could form soft-templates to direct the growth of NWs. Due to its high-density of low-coordinated sites on the surface, Pt-based R-NWs exhibit higher oxygen reduction reaction (ORR) activities but lower stabilities than corresponding S-NWs. Notably, Pt0.78Ni0.22 R-NWs possess the highest mass activity (1.07 A·mgPt−1) and specific activity (1.02 mA·cm−2) among all Pt-based NWs. After 10,000 sweeping cycles, the mass activity still exhibits 5.7-fold enhancement compared to the corresponding commercial Pt/C. This work presents a new approach to delicately control the surface structure of ultrathin Pt-based NWs as advanced ORR catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 2004, 93, 156801.

    Article  Google Scholar 

  2. Greeley, J; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J; Chorkendorff, I; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

    Article  Google Scholar 

  3. Zhang, J.; Fang, J. Y. A general strategy for preparation of Pt 3D-transition metal (Co, Fe, Ni) nanocubes. J. Am. Chem. Soc. 2009, 131, 18543–18547.

    Article  Google Scholar 

  4. Bu, L. Z.; Ding, J. B.; Guo, S. J.; Zhang, X.; Su, D.; Zhu, X.; Yao, J. L.; Guo, J.; Lu, G.; Huang, X. Q. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 2015, 27, 7204–7212.

    Article  Google Scholar 

  5. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  6. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.

    Article  Google Scholar 

  7. Porter, N. S.; Wu, H.; Quan, Z. W.; Fang, J. Y. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2013, 46, 1867–1877.

    Article  Google Scholar 

  8. Quan, Z. W.; Wang, Y. X.; Fang, J. Y. Correction to high-index faceted noble metal nanocrystals. Acc. Chem. Res. 2013, 46, 1050.

    Article  Google Scholar 

  9. Li, Q.; Sun, S. H. Recent advances in the organic solution phase synthesis of metal nanoparticles and their electrocatalysis for energy conversion reactions. Nano Energy 2016, 29, 178–197.

    Article  Google Scholar 

  10. Zhang, L.; Niu, W. X.; Xu, G. B. Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today 2012, 7, 586–605.

    Article  Google Scholar 

  11. Zhang, N.; Feng, Y. G.; Zhu, X.; Guo, S. J.; Guo, J.; Huang, X. Q. Superior bifunctional liquid fuel oxidation and oxygen reduction electrocatalysis enabled by PtNiPd core-shell nanowires. Adv. Mater. 2017, 29, 1603774.

    Article  Google Scholar 

  12. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  Google Scholar 

  13. Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    Article  Google Scholar 

  14. Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    Article  Google Scholar 

  15. Jiang, K. Z.; Zhao, D. D.; Guo, S. J.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Q. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Sci. Adv. 2017, 3, e1601705.

    Article  Google Scholar 

  16. Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.

    Article  Google Scholar 

  17. Li, Q.; Wu, L. H.; Wu, G.; Su, D.; Lv, H. F.; Zhang, S.; Zhu, W. L.; Casimir, A.; Zhu, H. Y.; Mendoza-Garcia, A. et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 2015, 15, 2468–2473.

    Article  Google Scholar 

  18. Guo, S. J.; Dong, S. J.; Wang, E. K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010, 4, 547–555.

    Article  Google Scholar 

  19. Zhang, W. Y.; Yang, Y.; Huang, B. L.; Lv, F.; Wang, K.; Li, N.; Luo, M. C.; Chao, Y. G.; Li, Y. J.; Sun, Y. J. et al. Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 2019, 31, 1805833.

    Article  Google Scholar 

  20. Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem. 2015, 127, 3868–3872.

    Article  Google Scholar 

  21. Koenigsmann, C.; Wong, S. S. One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 1161–1176.

    Article  Google Scholar 

  22. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    Article  Google Scholar 

  23. Huang, H. W.; Li, K.; Chen, Z.; Luo, L. H.; Gu, Y. Q.; Zhang, D. Y.; Ma, C.; Si, R.; Yang, J. L.; Peng, Z. M. et al. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J. Am. Chem. Soc. 2017, 139, 8152–8159.

    Article  Google Scholar 

  24. Koenigsmann, C.; Zhou, W. P.; Adzic, R. R.; Sutter, E.; Wong, S. S. Size-dependent enhancement of electrocatalytic performance in relatively defect-free, processed ultrathin platinum nanowires. Nano Lett. 2010, 10, 2806–2811.

    Article  Google Scholar 

  25. Fiorentini, V.; Methfessel, M.; Scheffler, M. Reconstruction mechanism of fcc transition metal (001) surfaces. Phys. Rev. Lett. 1993, 71, 1051–1054.

    Article  Google Scholar 

  26. Li, K.; Li, X. X.; Huang, H. W.; Luo, L. H.; Li, X.; Yan, X. P.; Ma, C.; Si, R.; Yang, J. L.; Zeng, J. One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst. J. Am. Chem. Soc. 2018, 140, 16159–16167.

    Article  Google Scholar 

  27. Luo, M. C.; Guo, S. J. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2, 17059.

    Article  Google Scholar 

  28. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    Article  Google Scholar 

  29. Jiang, K. Z.; Shao, Q.; Zhao, D. D.; Bu, L. Z.; Guo, J.; Huang, X. Q. Phase and composition tuning of 1D platinum-nickel nanostructures for highly efficient electrocatalysis. Adv. Funct. Mater. 2017, 27, 1700830.

    Article  Google Scholar 

  30. Li, H. H.; Ma, S. Y.; Fu, Q. Q.; Liu, X. J.; Wu, L.; Yu, S. H. Scalable bromide-triggered synthesis of Pd@Pt core-shell ultrathin nanowires with enhanced electrocatalytic performance toward oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 7862–7868.

    Article  Google Scholar 

  31. Liu, H. Q.; An, W.; Li, Y. Y.; Frenkel, A. I.; Sasaki, K.; Koenigsmann, C.; Su, D.; Anderson, R. M.; Crooks, R. M.; Adzic, R. R. et al. In situ probing of the active site geometry of ultrathin nanowires for the oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 12597–12609.

    Article  Google Scholar 

  32. Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.

    Article  Google Scholar 

  33. Yogamalar, R.; Srinivasan, R.; Vinu, A.; Ariga, K.; Bose, A. C. X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 2009, 149, 1919–1923.

    Article  Google Scholar 

  34. Deshpande, S.; Patil, S.; Kuchibhatla, S. V.; Seal, S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 2005, 87, 133113.

    Article  Google Scholar 

  35. Tsunekawa, S.; Ishikawa, K.; Li, Z. Q.; Kawazoe, Y.; Kasuya, A. Origin of anomalous lattice expansion in oxide nanoparticles. Phys. Rev. Lett. 2000, 85, 3440–3443.

    Article  Google Scholar 

  36. Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 2010, 10, 638–644.

    Article  Google Scholar 

  37. Wang, C.; Hou, Y. L.; Kim, J.; Sun, S. H. A general strategy for synthesizing FePt nanowires and nanorods. Angew. Chem. 2007, 119, 6449–6451.

    Article  Google Scholar 

  38. Guo, S. J.; Zhang, S.; Sun, X. L.; Sun, S. H. Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J. Am. Chem. Soc. 2011, 133, 15354–15357.

    Article  Google Scholar 

  39. Song, Y. J.; Garcia, R. M.; Dorin, R. M.; Wang, H. R.; Qiu, Y.; Coker, E. N.; Steen, W. A.; Miller, J. E.; Shelnutt, J. A. Synthesis of platinum nanowire networks using a soft template. Nano Lett. 2007, 7, 3650–3655.

    Article  Google Scholar 

  40. Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.

    Article  Google Scholar 

  41. Wang, Y. W.; He, J. T.; Liu, C. C.; Chong, W. H.; Chen, H. Y. Thermodynamics versus kinetics in nanosynthesis. Angew. Chem., Int. Ed. 2015, 54, 2022–2051.

    Article  Google Scholar 

  42. Liao, H. G.; Cui, L. K.; Whitelam, S.; Zheng, H. M. Real-time imaging of Pt3Fe nanorod growth in solution. Science 2012, 336, 1011–1014.

    Article  Google Scholar 

  43. Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329, 550–553.

    Article  Google Scholar 

  44. Lee Penn, R.; Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969–971.

    Article  Google Scholar 

  45. Xia, X. H.; Xie, S. F.; Liu, M. C.; Peng, H. C.; Lu, N.; Wang, J. G.; Kim, M. J.; Xia, Y. N. On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. Proc. Natl. Acad. Sci. USA 2013, 110, 6669–6673.

    Article  Google Scholar 

  46. Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater. 2018, 30, 1705515.

    Article  Google Scholar 

  47. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  Google Scholar 

  48. Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 51772142), Shenzhen Science and Technology Innovation Committee (Nos. KQJSCX20170328155428476 and KQTD2016053019134356), Development and Reform Commission of Shenzhen Municipality (Novel Nanomaterial Discipline Construction Plan), and the China Postdoctoral Science Foundation (No. 2018M641633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zewei Quan.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Luo, S., Zhao, X. et al. One-nanometer-thick platinum-based nanowires with controllable surface structures. Nano Res. 12, 1721–1726 (2019). https://doi.org/10.1007/s12274-019-2428-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2428-2

Keywords

Navigation