Skip to main content
Log in

Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Colloidal suspensions of plasmonic nanoparticles (NPs) are a well-established tool for biomedical applications and enhanced spectroscopy because of their strong optical response. The specific response is greatly dependent on the NP shape. The strong optical activity of chiral NPs has created special interest but fabrication of chiral NPs in solution remains challenging. Here, we present an approach whereby three-dimensional (3D) chiral Au nano-hooks, fabricated with the parallel hole-mask colloidal lithography (HMCL) method, can be lifted off from a glass substrate in a controllable manner by using a combined treatment with oxygen plasma oxidation and a reduction step in solution. This method has the advantage of being based on established techniques and not requiring strong acids or complex substrates as in etching based approaches. We furthermore demonstrate the integration of the hook NPs into reversibly cross-linked hydrogels inspired by mussel catechol chemistry but containing an oxidation resistant catechol analogue grafted onto poly(allylamine) crosslinked by coordination of Al3+ and how this facilitates the remote analysis of hydrogel microenvironment, e.g. the water content. The suspended particles are promising candidates for optically active surface-enhanced Raman spectroscopy (SERS), asymmetric photo catalysis or aggregation sensing. The integration into hydrogels to produce functional hydrogels holds benefits for applications of metamaterials in optics, sensing or activation in environmental remediation or drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Abajo, F. J. G. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. C 2008, 112, 17983–17987.

    Article  Google Scholar 

  2. McMahon, J. M.; Gray, S. K.; Schatz, G. C. Nonlocal optical response of metal nanostructures with arbitrary shape. Phys. Rev. Lett. 2009, 103, 097403.

    Article  Google Scholar 

  3. Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 1997, 101, 3706–3712.

    Article  Google Scholar 

  4. Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663–12676.

    Article  Google Scholar 

  5. Romo-Herrera, J. M.; Alvarez-Puebla, R. A.; Liz-Marzán, L. M. Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 2011, 3, 1304–1315.

    Article  Google Scholar 

  6. Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.

    Article  Google Scholar 

  7. De, M.; Ghosh, P. S.; Rotello, V. M. Applications of nanoparticles in biology. Adv. Mater. 2008, 20, 4225–4241.

    Article  Google Scholar 

  8. Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008, 37, 1783–1791.

    Article  Google Scholar 

  9. Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870–1901.

    Article  Google Scholar 

  10. Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105, 4065–4067.

    Article  Google Scholar 

  11. Smith, D. K.; Korgel, B. A. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 2008, 24, 644–649.

    Article  Google Scholar 

  12. Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley: New York, 1998.

    Book  Google Scholar 

  13. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

    Article  Google Scholar 

  14. Morales-Dalmau, J.; Vilches, C.; De Miguel, I.; Sanz, V.; Quidant, R. Optimum morphology of gold nanorods for light-induced hyperthermia. Nanoscale 2018, 10, 2632–2638.

    Article  Google Scholar 

  15. Novak, J. P.; Feldheim, D. L. Assembly of phenylacetylene-bridged silver and gold nanoparticle arrays. J. Am. Chem. Soc. 2000, 122, 3979–3980.

    Article  Google Scholar 

  16. Bidault, S.; García De Abajo, F. J.; Polman, A. Plasmon-based nanolenses assembled on a well-defined DNA template. J. Am. Chem. Soc. 2008, 130, 2750–2751.

    Article  Google Scholar 

  17. Brown, L. V.; Sobhani, H.; Lassiter, J. B.; Nordlander, P.; Halas, N. J. Heterodimers: Plasmonic properties of mismatched nanoparticle pairs. ACS Nano, 2010, 4, 819–832.

    Article  Google Scholar 

  18. Rycenga, M.; Camargo, P. H. C.; Li, W. Y.; Moran, C. H.; Xia, Y. N. Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. J. Phys. Chem. Lett. 2010, 1, 696–703.

    Article  Google Scholar 

  19. McPeak, K. M.; Van Engers, C. D.; Bianchi, S.; Rossinelli, A.; Poulikakos, L. V.; Bernard, L.; Herrmann, S.; Kim, D. K.; Burger, S.; Blome, M. et al. Ultraviolet plasmonic chirality from colloidal aluminum nanoparticles exhibiting charge-selective protein detection. Adv. Mater. 2015, 27, 6244–6250.

    Article  Google Scholar 

  20. Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314.

    Article  Google Scholar 

  21. Li, Q. Y.; Lu, G. X. Controlled synthesis and photocatalytic investigation of different-shaped one-dimensional titanic acid nanomaterials. J. Power Sources 2008, 185, 577–583.

    Article  Google Scholar 

  22. Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.

    Article  Google Scholar 

  23. Polavarapu, L.; Xu, Q. H. Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS. Langmuir 2008, 24, 10608–10611.

    Article  Google Scholar 

  24. Li, Z. T.; Zhu, Z. N.; Liu, W. J.; Zhou, Y. L.; Han, B.; Gao, Y.; Tang, Z. Y. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 2012, 134, 3322–3325.

    Article  Google Scholar 

  25. Liu, W. J.; Zhu, Z. N.; Deng, K.; Li, Z. T.; Zhou, Y. L.; Qui, H. B.; Gao, Y.; Che, S. N.; Tang, Z. Y. Gold nanorod@Chiral mesoporous silica core-shell nanoparticles with unique optical properties. J. Am. Chem. Soc. 2013, 135, 9659–9664.

    Article  Google Scholar 

  26. Wang, Z. L. The new field of nanopiezotronics. Mater. Today 2007, 10, 20–28.

    Article  Google Scholar 

  27. Delclos, T.; Aimé, C.; Pouget, E.; Brizard, A.; Huc, I.; Delville, M. H.; Oda, R. Individualized silica nanohelices and nanotubes: Tuning inorganic nanostructures using lipidic self-assemblies. Nano Lett. 2008, 8, 1929–1935.

    Article  Google Scholar 

  28. Qiao, Y.; Wang, Y. J.; Yang, Z. Y.; Lin, Y. Y.; Huang, J. B. Self-templating of metal-driven supramolecular self-assembly: A general approach toward 1D inorganic nanotubes. Chem. Mater. 2011, 23, 1182–1187.

    Article  Google Scholar 

  29. Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as broadband circular polarizer. Science 2009, 325, 1513–1515.

    Article  Google Scholar 

  30. Radke, A.; Gissibl, T.; Klotzbücher, T.; Braun, P. V.; Giessen, H. Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating. Adv. Mater. 2011, 23, 3018–3021.

    Article  Google Scholar 

  31. Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495–513.

    Article  Google Scholar 

  32. Hulteen, J. C.; Van Duyne, R. P. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 1995, 13, 1553–1558.

    Article  Google Scholar 

  33. Verre, R.; Shao, L.; Odebo Länk, N.; Karpinski, P.; Yankovich, A. B.; Antosiewicz, T. J.; Olsson, E.; Käll, M. Metasurfaces and colloidal suspensions composed of 3D chiral Si nanoresonators. Adv. Mater. 2017, 29, 1701352.

    Article  Google Scholar 

  34. Verre, R.; Odebo Länk, N.; Andrén, D.; Šipová, H.; Käll, M. Large-scale fabrication of shaped high index dielectric nanoparticles on a substrate and in solution. Adv. Opt. Mater. 2018, 6, 1701253.

    Article  Google Scholar 

  35. McPeak, K. M.; Van Engers, C. D.; Blome, M.; Park, J. H.; Burger, S.; Gosálvez, M. A.; Faridi, A.; Ries, Y. R.; Sahu, A.; Norris, D. J. Complex chiral colloids and surfaces via high-index off-cut silicon. Nano Lett. 2014, 14, 2934–2940.

    Article  Google Scholar 

  36. Fredriksson, H.; Alaverdyan, Y.; Dmitriev, A.; Langhammer, C.; Sutherland, D. S.; Zäch, M.; Kasemo, B. Hole-mask colloidal lithography. Adv. Mater. 2007, 19, 4297–4302.

    Article  Google Scholar 

  37. Frederiksen, M.; Sutherland, D. S. Direct modification of colloidal hole-masks for locally ordered hetero-assemblies of nanostructures over large areas. Nanoscale 2014, 6, 731–735.

    Article  Google Scholar 

  38. Frank, B.; Yin, X. H.; Schäferling, M.; Zhao, J.; Hein, S. M.; Braun, P. V.; Giessen, H. Large-area 3D chiral plasmonic structures. ACS Nano 2013, 7, 6321–6329.

    Article  Google Scholar 

  39. Fang, Y. R.; Verre, R.; Shao, L.; Nordlander, P.; Käll, M. Hot electron generation and cathodoluminescence nanoscopy of chiral split ring resonators. Nano Lett. 2016, 16, 5183–5190.

    Article  Google Scholar 

  40. Krogsgaard, M.; Nue, V.; Birkedal, H. Mussel-inspired materials: Self-healing through coordination chemistry. Chem. —Eur. J. 2016, 22, 844–857.

    Article  Google Scholar 

  41. Krogsgaard, M.; Behrens, M. A.; Pedersen, J. S.; Birkedal, H. Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 2013, 14, 297–301.

    Article  Google Scholar 

  42. Holten-Andersen, N.; Harrington, M. J.; Birkedal, H.; Lee, B. P.; Messersmith, P. B.; Lee, K. Y. C.; Waite, J. H. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. USA 2011, 108, 2651–2655.

    Article  Google Scholar 

  43. Andersen, A.; Krogsgaard, M.; Birkedal, H. Mussel-inspired self-healing double-cross-linked hydrogels by controlled combination of metal coordination and covalent cross-linking. Biomacromolecules 2018, 19, 1402–1409.

    Article  Google Scholar 

  44. Takano, Y.; Takahashi, J. I.; Kaneko, T.; Marumo, K.; Kobayashi, K. Asymmetric synthesis of amino acid precursors in interstellar complex organics by circularly polarized light. Earth Planet. Sci. Lett. 2007, 254, 106–114.

    Article  Google Scholar 

  45. Thoniyot, P.; Tan, M. J.; Karim, A. A.; Young, D. J.; Loh, X. J. Nanoparticle-hydrogel composites: Concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2015, 21, 1400010.

    Article  Google Scholar 

  46. Wang, C.; Flynn, N. T.; Langer, R. Controlled structure and properties of thermoresponsive nanoparticle-hydrogel composites. Adv. Mater. 2004, 16, 1074–1079.

    Article  Google Scholar 

  47. Menyo, M. S.; Hawker, C. J.; Waite, J. H. Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands. Soft Matter 2013, 9, 10314–10323.

    Article  Google Scholar 

  48. Yesilkoy, F.; Flauraud, V.; Rüegg, M.; Kim, B. J.; Brugger. J. 3D nanostructures fabricated by advanced stencil lithography. Nanoscale 2016, 8, 4945–4950.

    Article  Google Scholar 

  49. Kontio, J. M.; Simonen, J.; Tommila, J.; Pessa, M. Arrays of metallic nanocones fabricated by UV-nanoimprint lithography. Microelectron. Eng. 2010, 87, 1711–1715.

    Article  Google Scholar 

  50. Vazquez-Mena, O.; Villanueva, L. G.; Savu, V.; Sidler, K.; Langlet, P.; Brugger, J. Analysis of the blurring in stencil lithography. Nanotechnology 2009, 20, 415303.

    Article  Google Scholar 

  51. Yunker, P. J.; Still, T.; Lohr, M. A.; Yodh, A. G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 2011, 476, 308–311.

    Article  Google Scholar 

  52. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829.

    Article  Google Scholar 

  53. Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R. V.; Lapthorn, A. J.; Kelly, S. M.; Barron, L. D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat Nanotechnol 2010, 5, 783–787.

    Article  Google Scholar 

  54. Liu, J. J. Optical properties of chiral plasmonic nanoparticles and mesoporous silicon nanowires. Ph.D. Dissertation, Hong Kong Baptist University, Hong Kong, China, 2017.

    Google Scholar 

  55. García-Guirado, J.; Svedendahl, M.; Puigdollers, J.; Quidant, R. Enantiomer-selective molecular sensing using racemic nanoplasmonic arrays. Nano Lett. 2018, 18, 6279–6285.

    Article  Google Scholar 

  56. Kalinkin, A. V.; Smirnov, M. Y.; Bukhtiyarov, A. V.; Bukhtiyarov, V. I. XPS study of gold oxidation with nitrogen dioxide in model Au/C samples. Kinet. Catal. 2015, 56, 796–800.

    Article  Google Scholar 

  57. Stadnichenko, A. I.; Koshcheev, S. V.; Boronin, A. I. Oxidation of the polycrystalline gold foil surface and XPS study of oxygen states in oxide layers. Moscow. Univ. Chem. Bull. 2007, 62, 343–349.

    Article  Google Scholar 

  58. Juodkazis, K.; Juodkazytė, J.; Jasulaitienė, V.; Lukinskas, A.; Šebeka, B. XPS studies on the gold oxide surface layer formation. Electrochem. Commun. 2000, 2, 503–507.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Independent Research Fund Denmark through grant DFF - 4184-00301 and by the Lundbeck Foundation through grant R180-2014-3468. Affiliation with the center for integrated materials research (iMAT) at Aarhus University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan S. Sutherland.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klös, G., Andersen, A., Miola, M. et al. Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks. Nano Res. 12, 1635–1642 (2019). https://doi.org/10.1007/s12274-019-2412-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2412-x

Keywords

Navigation