Skip to main content
Log in

Analysis of photoluminescence behavior of high-quality single-layer MoS2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The ability to tailor and enhance photoluminescence (PL) behavior in two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as molybdenum disulfide (MoS2) is significant for pursuing optoelectronic applications. To achieve this, it has been essential to obtain high-quality single-layer MoS2 and fully explore its intrinsic PL performance. Here, we fabricate single-layer MoS2 by a thermal vapor sulfurization method in which a pre-deposited molybdenum trioxide (MoO3) thin film is sulfurized over a short period (for several minutes) to turn into MoS2. These as-grown MoS2 crystals show quite strong PL, which is about one order of magnitude higher than that of chemical-vapor-deposited MoS2. Temperature- and power-dependent spectroscopy measurements disclose the apparent influence of sulfur (S) vacancies on the PL behavior and the noticeable free-to-bound exciton recombinations in the luminescence process. The fact that PL intensity of the sample in vacuum sharply lowered down relative to in air reveals that the high PL is facilitated by molecular adsorption on S vacancies in air. And multi-channel decay processes coupled with S vacancies are revealed in the time-resolved PL spectroscopy. In our work, single-layer MoS2 with high PL is synthesized and its defect-induced PL features are analyzed, which is of great importance for developing advanced nano-electronics and optoelectronics based on 2D structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia, M.; Li, B.; Yin, K. B.; Capellini, G.; Niu, G.; Gong, Y. J.; Zhou, W.; Ajayan, P. M.; Xie, Y. H. Spectroscopic signatures of AA’ and AB stacking of chemical vapor deposited bilayer MoS2. ACS Nano 2015, 9, 12246–12254.

    Article  Google Scholar 

  2. Kim, I. S.; Sangwan, V. K.; Jariwala, D.; Wood, J. D.; Park, S.; Chen, K. S.; Shi, F. Y.; Ruiz-Zepeda, F.; Ponce, A.; Jose-Yacaman, M. et al. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano 2014, 8, 10551–10558.

    Article  Google Scholar 

  3. Ceballos, F.; Bellus, M.Z.; Chiu, H. Y.; Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der waals heterostructure. ACS Nano 2014, 8, 12717–12724.

    Article  Google Scholar 

  4. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. Atomically thin MoS2: A new direct-gap semiconductor. Phy. Rev. Lett. 2010, 705, 136805.

    Article  Google Scholar 

  5. Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 2014, 14, 5590–5597.

    Article  Google Scholar 

  6. Galfsky, T.; Sun, Z.; Considine, C. R.; Chou, C. T.; Ko, W. C.; Narimanov, E. E.; Menon, V. M. Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals. Nano Lett. 2016, 16, 4940–4945.

    Article  Google Scholar 

  7. Wan, Y.; Zhang, H.; Wang, W.; Sheng, B. W.; Zhang, K.; Wang, Y. L.; Song, Q. J.; Mao, N. N.; Li, Y. P.; Wang, X. et al. Origin of improved optical quality of monolayer molybdenum disulfide grown on hexagonal boron nitride substrate. Small 2016, 12, 198–203.

    Article  Google Scholar 

  8. Joo, P.; Jo, K.; Ahn, G.; Voiry, D.; Jeong, H. Y.; Ryu, S.; Chhowalla, M.; Kim, B. S. Functional polyelectrolyte nanospaced MoS2 multilayers for enhanced photoluminescence. Nano Lett. 2014, 14, 6456–6462.

    Article  Google Scholar 

  9. Yu, Y. F.; Yu, Y. L.; Xu, C.; Cai, Y. Q.; Su, L. Q.; Zhang, Y.; Zhang, Y. W.; Gundogdu, K.; Cao, L. Y. Engineering substrate interactions for high luminescence efficiency of transition-metal dichalcogenide monolayers. Adv. Funct. Mater. 2016, 26, 4733–4739.

    Article  Google Scholar 

  10. Li, Z. W.; Li, Y.; Han, T. Y.; Wang, X. L.; Yu, Y.; Tay, B.; Liu, Z.; Fang, Z. Y. Tailoring MoS2 exciton–plasmon interaction by optical spin-orbit coupling. ACS Nano 2017, 11, 1165–1171.

    Article  Google Scholar 

  11. Amani, M.; Burke, R. A.; Ji, X.; Zhao, P. D.; Lien, D. H.; Taheri, P.; Ahn, G. H.; Kirya, D.; Ager, III J. W.; Yablonovitch, E. et al. High luminescence efficiency in MoS2 grown by chemical vapor deposition. ACS Nano 2016, 10, 6535–6541.

    Article  Google Scholar 

  12. Li, Z. W.; Ye, R. Q.; Ye, R.; Kang, Y. M.; Zhu, X.; Tour, J. M.; Fang, Z. Y. Graphene quantum dots doping of MoS2 monolayers. Adv. Mater. 2015, 27, 5235–5240.

    Article  Google Scholar 

  13. Kwon, K. C.; Choi, S.; Hong, K.; Moon, C. W.; Jang, D. H.; Kim, T.; Sohn, W.; Jeon, J. M.; Lee, J. M.; Nam, K. T. et al. Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy Environ. Sci. 2016, 9, 2240–2248.

    Article  Google Scholar 

  14. Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G G; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.

    Article  Google Scholar 

  15. Zhang, G. Z.; Wang, J. W.; Wu, Z. F.; Ouyang, W. K.; Amini, A.; Chandrashekar, B. N.; Wang, N.; Cheng, C. Shape-dependent defect structures of monolayer MoS2 crystals grown by chemical vapor deposition. ACSAppl. Mater. Interfaces 2017, 9, 763–770.

    Article  Google Scholar 

  16. Zafar, A.; Nan, H. Y.; Zafar, Z.; Wu, Z. T.; Jiang, J.; You, Y. M.; Ni, Z. H. Probing the intrinsic optical quality of CVD grown MoS2. Nano Res. 2017, 10, 1608–1617.

    Article  Google Scholar 

  17. Ji, Q. Q.; Zhang, Y.; Zhang, Y. F.; Liu, Z. F. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: Engineered substrates from amorphous to single crystalline. Chem. Soc. Rev. 2015, 44, 2587–2602.

    Article  Google Scholar 

  18. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    Article  Google Scholar 

  19. Lee, C.; Yuan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  Google Scholar 

  20. Jadczak, J.; Kutrowska-Girzycka, J.; Kapuściński, P.; Huang, Y. S.; Wójs, A.; Bryja, L. Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology, 2017, 28, 395702.

    Article  Google Scholar 

  21. Carozo, V.; Wang, Y. X.; Fujisawa, K.; Carvalho, B. R.; McCreary, A.; Feng, S.; Lin, Z.; Zhou, C.; Perea-López, N.; Elias, A. L. et al. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide. Sci. Adv. 2017, 3, e1602813.

    Article  Google Scholar 

  22. Varshni, Y. P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149–154.

    Article  Google Scholar 

  23. Wang, H. N.; Zhang, C. J.; Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 2015, 75, 339–345.

    Article  Google Scholar 

  24. Sun, L. F.; Zhang, X. M.; Liu, F. C.; Shen, Y. D.; Fan, X. F.; Zheng, S. J.; Thong, J. T. L.; Liu, Z.; Yang, S. A.; Yang, H. Y. Vacuum level dependent photoluminescence in chemical vapor deposition-grown monolayer MoS2. Sci. Rep. 2017, 7, 16714.

    Article  Google Scholar 

  25. Schmidt, T.; Lischka, K.; Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phy. Rev. B 1992, 45, 8989–8994.

    Article  Google Scholar 

  26. Senthilkumar, V.; Tam, L. C.; Kim, Y. S.; Sim, Y.; Seong, M. J.; Jang, J. I. Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers. Nano Res. 2014, 7, 1759–1768.

    Article  Google Scholar 

  27. Ganta, D.; Sinha, S.; Haasch, R. T. 2D material molybdenum disulfide analyzed by XPS. Surf. Sci. Spectra 2014, 21, 19.

    Article  Google Scholar 

  28. Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072–1080.

    Article  Google Scholar 

  29. Sim, S.; Park, J.; Song, J. G.; In, C.; Lee, Y. S.; Kim, H.; Choi, H. Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics. Phy. Rev. B 2013, 88, 075434.

    Article  Google Scholar 

  30. Wang, H. N.; Zhang, C. J.; Rana, F. Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett. 2015, 15, 8204–8210.

    Article  Google Scholar 

  31. Wang, H. N.; Zhang, C. J.; Chan, W. M.; Manolatou, C.; Tiwari, S.; Rana, F. Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2. Phy. Rev. B 2016, 93, 045407.

    Article  Google Scholar 

  32. Robert, C.; Lagarde, D.; Cadiz, F.; Wang, G.; Lassagne, B.; Amand, T.; Balocchi, A.; Renucci, P.; Tongay, S.; Urbaszek, B. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phy. Rev. B 2016, 93, 205423.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51672005) and the National Key R&D Program of China (No. 2016YFE0127300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anyuan Cao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Zhao, L., Wang, Y. et al. Analysis of photoluminescence behavior of high-quality single-layer MoS2. Nano Res. 12, 1619–1624 (2019). https://doi.org/10.1007/s12274-019-2401-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2401-0

Keywords

Navigation