Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction

  • 674 Accesses

  • 5 Citations

Abstract

The suitable materials, metal nitrides, are a promising class of electrocatalyst materials for a highly efficient oxygen evolution reaction (OER) because they exhibit superior intrinsic conductivity and have higher sustainability than oxide-based materials. To our knowledge, for the first time, we report a designable synthesis of three-dimensional (3D) and mesoporous Co3N@amorphous N-doped carbon (AN-C) nanocubes (NCs) with well-controlled open-framework structures via monodispersed Co3[Co(CN)6]2 Prussian blue analogue (PBA) NC precursors using in situ nitridation and calcination processes. Co3N@AN-C NCs (2 h) demonstrate better OER activity with a remarkably low Tafel plot (69.6 mV·dec−1), low overpotential of 280 mV at a current density of 10 mA·cm−2. Additionally, excellent cycling stability in alkaline electrolytes was exhibited without morphological changes and voltage elevations, superior to most reported hierarchical structures of transition-metal nitride particles. The presented strategy for synergy effects of metal-organic frameworks (MOFs)-derived transition-metal nitrides-carbon hybrid nanostructures provides prospects for developing high-performance and advanced electrocatalyst materials.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Jiang, J.; Zhang, A. L.; Li, L. L.; Ai, L. H. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J. Power Sources 2015, 278, 445–451.

  2. [2]

    Lang, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. 2014, 126, 7714–7718.

  3. [3]

    Yu, X. Y.; Feng, Y.; Guan, B. Y.; Lou, X. W.; Paik, U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy Environ. Sci. 2016, 9, 1246–1250.

  4. [4]

    Kim, M.; Kim, S.; Song, D.; Oh, S.; Chang, K. J.; Cho, E. Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide. Appl. Catal. B Environ. 2018, 227, 340–348.

  5. [5]

    Tian, J. Q.; Liu, Q.; Asiri, A. M.; Alamry, K. A.; Sun, X. P. Ultrathin graphitic C3N4 nanosheets/graphene composites: Efficient organic electrocatalyst for oxygen evolution reaction. ChemSusChem 2014, 7, 2125–2130.

  6. [6]

    Zhao, X.; Li, X. Q.; Yan, Y.; Xing, Y. L.; Lu, S. C.; Zhao, L. Y.; Zhou, S. M.; Peng, Z. M.; Zeng, J. Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution. Appl. Catal. B Environ. 2018, 236, 569–575.

  7. [7]

    Liu, X.; Jia, H. X.; Sun, Z. J.; Chen, H. Y.; Xu, P.; Du, P. W. Nanostructured copper oxide electrodeposited from copper(II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction. Electrochem. Commun. 2014, 46, 1–4.

  8. [8]

    Görlin, M.; Chernev, P.; de Araújo, J. F.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614.

  9. [9]

    Burke, M. S.; Zou, S. H.; Enman, L. J.; Kellon, J. E.; Gabor, C. A.; Pledger, E.; Boettcher, S. W. Revised oxygen evolution reaction activity trends for first-row transition-metal (Oxy)hydroxides in alkaline media. J. Phys. Chem. Lett. 2015, 6, 3737–3742.

  10. [10]

    Guo, Y. N.; Tang, J.; Wang, Z. L.; Sugahara, Y.; Yamauchi, Y. Hollow porous heterometallic phosphide nanocubes for enhanced electrochemical water splitting. Small, 2018, 14, 1802442.

  11. [11]

    Zhuang, Z. B.; Sheng, W. C.; Yan, Y. S. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv. Mater. 2014, 26, 3950–3955.

  12. [12]

    Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.

  13. [13]

    Nie, R. F.; Shi, J. J.; Du, W. C.; Ning, W. S.; Hou, Z. Y.; Xiao, F. S. A sandwich N-doped graphene/Co3O4 hybrid: An efficient catalyst for selective oxidation of olefins and alcohols. J. Mater. Chem. A 2013, 1, 9037–9045.

  14. [14]

    Yu, J. Y.; Zhou, W. J.; Xiong, T. L.; Wang, A. L.; Chen, S. W.; Chu, B. L. Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction. Nano Res. 2017, 10, 2599–2609.

  15. [15]

    Zhang, K. J.; Zhang, L. X.; Chen, X.; He, X.; Wang, X. G.; Dong, S. M.; Han, P. X.; Zhang, C. J.; Wang, S.; Gu, L.; Cui, G. L. Mesoporous cobalt molybdenum nitride: A highly active bifunctional electrocatalyst and its application in Lithium-O2 batteries. J. Phys. Chem. C 2013, 117, 858–865.

  16. [16]

    Jiang, M.; Li, Y. J.; Lu, Z. Y.; Sun, X. M.; Duan, X. Binary nickel–iron nitride nanoarrays as bifunctional electrocatalysts for overall water splitting. Inorg. Chem. Front. 2016, 3, 630–634.

  17. [17]

    Balogun, M. S.; Zeng, Y. X.; Qiu, W. T.; Luo, Y.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. Three-dimensional nickel nitride (Ni3N) nanosheets: Free standing and flexible electrodes for lithium ion batteries and supercapacitors. J. Mater. Chem. A 2016, 4, 9844–9849.

  18. [18]

    Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2015, 127, 14923–14927.

  19. [19]

    Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119–4125.

  20. [20]

    Gao, S. Y.; Wei, X. J.; Fan, H.; Li, L. Y.; Geng, K. R.; Wang, J. J. Nitrogen-doped carbon shell structure derived from natural leaves as a potential catalyst for oxygen reduction reaction. Nano Energy 2015, 73, 518–526.

  21. [21]

    Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

  22. [22]

    Li, X. N.; Ao, Z. M.; Liu, J. Y.; Sun, H. Q.; Rykov, A. I.; Wang, J. H. Topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient fenton-like catalysts. ACS Nano 2016, 10, 11532–11540.

  23. [23]

    Hu, L.; Zhang, P.; Chen, Q. W.; Mei, J. Y.; Yan, N. Room-temperature synthesis of Prussian blue analogue Co3[Co(CN)6]2 porous nanostructures and their CO2 storage properties. RSC Adv. 2011, 1, 1574–1578.

  24. [24]

    Buchold, D. H. M.; Feldmann, C. Synthesis of nanoscale Co3[Co(CN)6]2 in reverse microemulsions. Chem. Mater. 2007, 19, 3376–3380.

  25. [25]

    Agnihotry, S. A.; Singh, P.; Joshi, A. G.; Singh, D. P.; Sood, K. N.; Shivaprasad, S. M. Electrodeposited Prussian blue films: Annealing effect. Electrochim. Acta 2006, 51, 4291–4301.

  26. [26]

    Niu, J. J.; Gao, H.; Wang, L. T.; Xin, S. Y.; Zhang, G. Y.; Wang, Q.; Guo, L. N.; Liu, W. J.; Gao, X. P.; Wang, Y. H. Facile synthesis and optical properties of nitrogen-doped carbon dots. New J. Chem. 2014, 38, 1522–1527.

  27. [27]

    Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Comm. 2015, 6, 8668.

  28. [28]

    Wahid, M.; Parte, G.; Phase, D.; Ogale, S. Yogurt: A novel precursor for heavily nitrogen doped supercapacitor carbon. J. Mater. Chem. A 2015, 3, 1208–1215.

  29. [29]

    Susi, T.; Pichler, T.; Ayala, P. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J. Nanotechnol. 2015, 6, 177–192.

  30. [30]

    Meng, T.; Qin, J. W.; Wang, S. G.; Zhao, D.; Mao, B. G.; Cao, M. H. In situ coupling of Co0.85Se and N-doped carbon via one-step selenization of metal-organic frameworks as a trifunctional catalyst for overall water splitting and Zn–air batteries. J. Mater. Chem. A 2017, 5, 7001–7014.

  31. [31]

    Su, Y. H.; Zhu, Y. H.; Jiang, H. L.; Shen, J. H.; Yang, X. L.; Zou, W. J.; Chen, J. D.; Li, C. Z. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale 2014, 6, 15080–15089.

  32. [32]

    Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192.

  33. [33]

    Zhong, X.; Jiang, Y.; Chen, X. L.; Wang, L.; Zhuang, G. L.; Li, X. N.; Wang, J. G. Integrating cobalt phosphide and cobalt nitride-embedded nitrogen-rich nanocarbons: High-performance bifunctional electrocatalysts for oxygen reduction and evolution. J. Mater. Chem. A 2016, 4, 10575–10584.

  34. [34]

    Todorova, S.; Kolev, H.; Holgado, J. P.; Kadinov, G.; Bonev, C.; Pereñíguez, R.; Caballero, A. Complete n-hexane oxidation over supported Mn–Co catalysts. App. Catal. B: Environ. 2010, 94, 46–54.

  35. [35]

    Zhong, X.; Liu, L.; Jiang, Y.; Wang, X. D.; Wang, L.; Zhuang, G. L.; Li, X. N.; Mei, D. H.; Wang, J. G.; Su, D. S. Synergistic effect of nitrogen in cobalt nitride and nitrogen-doped hollow carbon spheres for the oxygen reduction reaction. ChemCatChem 2015, 7, 1826–1832.

  36. [36]

    Wang, Y. Y.; Liu, D. D.; Liu, Z. J.; Xie, C.; Huo, J.; Wang, S. Y. Porous cobalt-iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting. Chem. Commun. 2016, 52, 12614–12617.

  37. [37]

    Chen, P. Z.; Xu, K.; Tong, Y.; Li, X. L.; Tao, S.; Fang, Z. W.; Chu, W. S.; Wu, X. J.; Wu, C. Z. Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction. Inorg. Chem. Front. 2016, 3, 236–242.

  38. [38]

    Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 8670–8674.

  39. [39]

    Swesi, A. T.; Masud, J.; Nath, M. Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ. Sci. 2016, 9, 1771–1782.

  40. [40]

    Yin, Z. X.; Zhu, C. L.; Li, C. Y.; Zhang, S.; Zhang, X. T.; Chen, Y. J. Hierarchical nickel-cobalt phosphide yolk-shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting. Nanoscale 2016, 8, 19129–19138.

  41. [41]

    Zhu, Y. P.; Liu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 2015, 25, 7337–7347.

  42. [42]

    Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

  43. [43]

    Li, W.; Gao, X. F.; Xiong, D. H.; Wei, F.; Song, W. G.; Xu, J. Y.; Liu, L. F. Hydrothermal synthesis of monolithic Co3Se4 nanowire electrodes for oxygen evolution and overall water splitting with high efficiency and extraordinary catalytic stability. Adv. Energy Mater. 2017, 7, 1602579.

  44. [44]

    Wang, H.; Qing, C.; Guo, J. L.; Aref, A. A.; Sun, D. M.; Wang, B. X.; Tang, Y. W. Highly conductive carbon-CoO hybrid nanostructure arrays with enhanced electrochemical performance for asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 11776–11783.

  45. [45]

    Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1A2B4015801).

Author information

Correspondence to Dae Ho Yoon.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, B.K., Im, S.Y., Lee, J. et al. In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res. 12, 1605–1611 (2019). https://doi.org/10.1007/s12274-019-2399-3

Download citation

Keywords

  • transition-metal nitride
  • metal organic framework
  • mesoporous
  • oxygen evaluation reaction
  • alkaline water electrolysis