Skip to main content
Log in

Reversible self-assembly of gold nanorods mediated by photoswitchable molecular adsorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stimuli-responsive self-assembly of nanoparticles represents a powerful strategy to achieve reconfigurable materials with novel functionalities and promising applications. In this regard, light-induced reversible self-assembly (LIRSA) of nanoparticles is most attractive but it is usually limited by the prerequisite yet cumbersome chemical functionalizations of the particle surface. Here we describe an innovative method to realize LIRSA of gold nanorods (GNRs) without surface functionalization through photoswitchable adsorption of an anionic azobenzene derivate AzoNa. The LIRSA of GNRs is caused by the reversible change between a nearly neutral state and a highly charged state of the GNRs arising from the photoswichable adsorption of AzoNa triggered by photoisomerization. The LIRSA behavior can be readily adjusted by changing the concentration of AzoNa and the aspect ratio of the GNRs. This new LIRSA strategy may provide a convenient and efficient route toward light-triggered reversibly reconfigurable nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grzybowski, B. A.; Fitzner, K.; Paczesny, J.; Granick, S. From dynamic self-assembly to networked chemical systems. Chem. Soc. Rev. 2017, 46, 5647–5678.

    Article  Google Scholar 

  2. Qian, Z. X.; Ginger, D. S. Reversibly reconfigurable colloidal plasmonic nanomaterials. J. Am. Chem. Soc. 2017, 139, 5266–5276.

    Article  Google Scholar 

  3. Li, F. Y.; Lu, J. X.; Kong, X. Q.; Hyeon, T.; Ling, D. S. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 2017, 29, 1605897.

    Article  Google Scholar 

  4. Li, D.; Qi, L. M. Self-assembly of inorganic nanoparticles mediated by host-guest interactions. Curr. Opin. Colloid Interface Sci. 2018, 35, 59–67.

    Article  Google Scholar 

  5. Zhang, Q.; Wang, W. Z.; Yu, J. J.; Qu, D. H.; Tian, H. Dynamic self-assembly encodes a tri-stable Au-TiO2 photocatalyst. Adv. Mater. 2017, 29, 1604948.

    Article  Google Scholar 

  6. Nie, Z. H.; Fava, D.; Kumacheva, E.; Zou, S.; Walker, G. C.; Rubinstein, M. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 2007, 6, 609–614.

    Article  Google Scholar 

  7. Sánchez-Iglesias, A.; Claes, N.; Solís, D. M.; Taboada, J. M.; Bals, S.; Liz-Marzán, L. M.; Grzelczak, M. Reversible clustering of gold nanoparticles under confinement. Angew. Chem., Int. Ed. 2018, 57, 3183–3186.

    Article  Google Scholar 

  8. Rao, A.; Roy, S.; Unnikrishnan, M.; Bhosale, S. S.; Devatha, G.; Pillai, P. P. Regulation of interparticle forces reveals controlled aggregation in charged nanoparticles. Chem. Mater. 2016, 28, 2348–2355.

    Article  Google Scholar 

  9. Zhang, Q.; Qu, D. H.; Wang, Q. C.; Tian, H. Dual-mode controlled self-assembly of TiO2 nanoparticles through a cucurbit[8]uril-enhanced radical cation dimerization interaction. Angew. Chem., Int. Ed. 2015, 54, 15789–15793.

    Article  Google Scholar 

  10. Gurunatha, K. L.; Fournier, A. C.; Urvoas, A.; Valerio-Lepiniec, M.; Marchi, V.; Minard, P.; Dujardin, E. Nanoparticles self-assembly driven by high affinity repeat protein pairing. ACS Nano 2016, 10, 3176–3185.

    Article  Google Scholar 

  11. Borsley, S.; Kay, E. R. Dynamic covalent assembly and disassembly of nanoparticle aggregates. Chem. Commun. 2016, 52, 9117–9120.

    Article  Google Scholar 

  12. Liu, Y. D.; Han, X. G.; He, L.; Yin, Y. D. Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling. Angew. Chem., Int. Ed. 2012, 51, 6373–6377.

    Article  Google Scholar 

  13. Nonappa; Haataja, J. S.; Timonen, J. V. I.; Malola, S.; Engelhardt, P.; Houbenov, N.; Lahtinen, M.; Häkkinen, H.; Ikkala, O. Reversible supracolloidal self-assembly of cobalt nanoparticles to hollow capsids and their superstructures. Angew. Chem., Int. Ed. 2017, 56, 6473–6477.

    Article  Google Scholar 

  14. Yu, Y. X.; Yu, D.; Orme, C. A. Reversible, tunable, electric-field driven assembly of silver nanocrystal superlattices. Nano Lett. 2017, 17, 3862–3869.

    Article  Google Scholar 

  15. Wang, M. S.; He, L.; Xu, W. J.; Wang, X.; Yin, Y. D. Magnetic assembly and field-tuning of ellipsoidal-nanoparticle-based colloidal photonic crystals. Angew. Chem., Int. Ed. 2015, 54, 7077–7081.

    Article  Google Scholar 

  16. Klajn, R.; Bishop, K. J. M.; Grzybowski, B. A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl. Acad. Sci. USA 2007, 104, 10305–10309.

    Article  Google Scholar 

  17. Yan, Y. Q.; Chen, J. I. L.; Ginger, D. S. Photoswitchable oligonucleotide-modified gold nanoparticles: Controlling hybridization stringency with photon dose. Nano Lett. 2012, 12, 2530–2536.

    Article  Google Scholar 

  18. Kundu, P. K.; Samanta, D.; Leizrowice, R.; Margulis, B.; Zhao, H.; Börner, M.; Udayabhaskararao, T.; Manna, D.; Klajn, R. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 2015, 7, 646–652.

    Article  Google Scholar 

  19. Chen, Y. H.; Wang, Z. W.; He, Y. J.; Yoon, Y. J.; Jung, J.; Zhang, G. Z.; Lin, Z. Q. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Proc. Natl. Acad. Sci. USA 2018, 115, E1391–E1400.

    Article  Google Scholar 

  20. Lu, X. F.; Huang, Y. J.; Liu, B. Q.; Zhang, L.; Song, L. P.; Zhang, J. W.; Zhang, A. F.; Chen, T. Light-controlled shrinkage of large-area gold nanoparticle monolayer film for tunable SERS activity. Chem. Mater. 2018, 30, 1989–1997.

    Article  Google Scholar 

  21. Manna, D.; Udayabhaskararao, T.; Zhao, H.; Klajn, R. Orthogonal light-induced self-assembly of nanoparticles using differently substituted azobenzenes. Angew. Chem., Int. Ed. 2015, 54, 12394–12397.

    Article  Google Scholar 

  22. Zhao, H. B.; Sen, S.; Udayabhaskararao, T.; Sawczyk, M.; Kučanda, K.; Manna, D.; Kundu, P. K.; Lee, J. W.; Král, P.; Klajn, R. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotech. 2016, 11, 82–88.

    Article  Google Scholar 

  23. He, H. B.; Feng, M.; Chen, Q. D.; Zhang, X. Q.; Zhan, H. B. Light-induced reversible self-assembly of gold nanoparticles surface-immobilized with coumarin ligands. Angew. Chem., Int. Ed. 2016, 55, 936–940.

    Article  Google Scholar 

  24. Samanta, D.; Klajn, R. Aqueous light-controlled self-assembly of nanoparticles. Adv. Opt. Mater. 2016, 4, 1373–1377.

    Article  Google Scholar 

  25. Lan, X.; Su, Z. M.; Zhou, Y. D.; Meyer, T.; Ke, Y. G.; Wang, Q. B.; Chiu, W.; Liu, N.; Zou, S. L.; Yan, H. et al. Programmable supra-assembly of a DNA surface adapter for tunable chiral directional self-assembly of gold nanorods. Angew. Chem., Int. Ed. 2017, 56, 14632–14636.

    Article  Google Scholar 

  26. Lin, H. X.; Lee, S.; Sun, L.; Spellings, M.; Engel, M.; Glotzer, S. C.; Mirkin, C. A. Clathrate colloidal crystals. Science 2017, 355, 931–935.

    Article  Google Scholar 

  27. Wang, Q.; Wang, Z. P.; Li, Z.; Xiao, J. Y.; Shan, H. Y.; Fang, Z. Y.; Qi, L. M. Controlled growth and shape-directed self-assembly of gold nanoarrows. Sci. Adv. 2017, 3, e1701183.

    Article  Google Scholar 

  28. Han, B.; Shi, L.; Gao, X. Q.; Guo, J.; Hou, K.; Zheng, Y. L.; Tang, Z. Y. Ultra-stable silica-coated chiral Au-nanorod assemblies: Core-shell nanostructures with enhanced chiroptical properties. Nano Res. 2016, 9, 451–157.

    Article  Google Scholar 

  29. Sun, Z. H.; Ni, W. H.; Yang, Z.; Kou, X. S.; Li, L.; Wang, J. F. pH-controlled reversible assembly and disassembly of gold nanorods. Small 2008, 4, 1287–1292.

    Article  Google Scholar 

  30. Sreeprasad, T. S.; Pradeep, T. Reversible assembly and disassembly of gold nanorods induced by EDTA and its application in SERS tuning. Langmuir 2011, 27, 3381–3390.

    Article  Google Scholar 

  31. Iida, R.; Mitomo, H.; Niikura, K.; Matsuo, Y.; Ijiro, K. Two-step assembly of thermoresponsive gold nanorods coated with a single kind of ligand. Small 2018, 14, 1704230.

    Article  Google Scholar 

  32. Wu, J.; Xu, Y.; Li, D. F.; Ma, X.; Tian, H. End-to-end assembly and disassembly of gold nanorods based on photo-responsive host-guest interaction. Chem. Commun. 2017, 53, 4577–4580.

    Article  Google Scholar 

  33. Lin, Y. Y.; Cheng, X. H.; Qiao, Y.; Yu, C. L.; Li, Z. B.; Yan, Y.; Huang, J. B. Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch. Soft Matter 2010, 6, 902–908.

    Article  Google Scholar 

  34. Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250–1261.

    Article  Google Scholar 

  35. Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600–1630.

    Article  Google Scholar 

  36. Zhang, L.; Dai, L. W.; Rong, Y.; Liu, Z. Z.; Tong, D. Y.; Huang, Y. J.; Chen, T. Light-triggered reversible self-assembly of gold nanoparticle oligomers for tunable SERS. Langmuir 2015, 31, 1164–1171.

    Article  Google Scholar 

  37. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

    Article  Google Scholar 

  38. Orendorff, C. J.; Murphy, C. J. Quantitation of metal content in the silver-assisted growth of gold nanorods. J. Phys. Chem. B 2006, 110, 3990–3994.

    Article  Google Scholar 

  39. Vigderman, L.; Zubarev, E. R. High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1,200 nm using hydroquinone as a reducing agent. Chem. Mater. 2013, 25, 1450–1457.

    Article  Google Scholar 

  40. Ruan, Q. F.; Shao, L.; Shu, Y. W.; Wang, J. F.; Wu, H. K. Growth of monodisperse gold nanospheres with diameters from 20 nm to 220 nm and their core/satellite nanostructures. Adv. Opt. Mater. 2014, 2, 65–73.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21673007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Qi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, D., Xiao, J. et al. Reversible self-assembly of gold nanorods mediated by photoswitchable molecular adsorption. Nano Res. 12, 1563–1569 (2019). https://doi.org/10.1007/s12274-019-2393-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2393-9

Keywords

Navigation