Skip to main content
Log in

CdS magic-size clusters exhibiting one sharp ultraviolet absorption singlet peaking at 361 nm

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report, for the first time, the synthesis of CdS magic-size clusters (MSCs) which exhibit a single sharp absorption peaking at ∼ 361 nm, along with sharp band edge photoemission at ∼ 377 nm and broad trap emission peaking at ∼ 490 nm. These MSCs are produced in a single-ensemble form without the contamination of conventional quantum dots (QDs) and/or other-bandgap clusters. They are denoted as MSC-361. We present the details of several controlled syntheses done in oleylamine (OLA), using Cd(NO3)2 or Cd(OAc)2 as a Cd source and thioacetamide (TAA) or elementary sulfur (S) as a S source. A high synthetic reproducibility of the reaction of Cd(NO3)2 and TAA to single-ensemble MSC-361 is achieved, the product of which is not contaminated by other bandgap clusters and/or QDs. In some cases, the reaction product exhibits an additional absorption peak at ∼ 322 nm. We demonstrate that the two peaks, at 361 and 322 nm, do not evolve synchronously. Therefore, the 322 nm peak is not a higher order electronic transition of MSC-361, but due to the presence of another ensemble, namely MSC-322. The present study suggests that there is an outstanding need for the development of a physical model to narrow the knowledge gap regarding the electronic structure in these colloidal semiconductor CdS MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, H. T.; Hyun, B. R.; Wise, F. W.; Robinson, R. D. A generic method for rational scalable synthesis of monodisperse metal sulfide nanocrystals. Nano Lett. 2012, 12, 5856–5860.

    Article  Google Scholar 

  2. Wang, Y.; Zhou, Y.; Zhang, Y; Buhro, W. E. Magic-size II–VI nanoclusters as synthons for flat colloidal nanocrystals. Inorg. Chem. 2015, 54, 1165–1177.

    Article  Google Scholar 

  3. Nevers, D. R.; Williamson, C. B.; Hanrath, T.; Robinson, R. D. Surface chemistry of cadmium sulfide magic-sized clusters: A window into ligand-nanoparticle interactions. Chem. Commun. 2017, 53, 2866–2869.

    Article  Google Scholar 

  4. Son, J. S.; Park, K.; Kwon, S. G.; Yang, J.; Choi, M. K.; Kim, J.; Yu, J. H.; Joo, J.; Hyeon, T. Dimension-controlled synthesis of CdS nanocrystals: From 0D quantum dots to 2D nanoplates. Small 2012, 8, 2394–2402.

    Article  Google Scholar 

  5. Li, Z.; Qin, H. Y.; Guzun, D.; Benamara, M.; Salamo, G.; Peng, X. G. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 2012, 5, 337–351.

    Article  Google Scholar 

  6. Li, M. J.; Ouyang, J. Y.; Ratcliffe, C. I.; Pietri, L.; Wu, X. H.; Leek, D. M.; Moudrakovski, I.; Lin, Q.; Yang, B.; Yu, K. CdS magic-sized nanocrystals exhibiting bright band gap photoemission via thermodynamically driven formation. ACS Nano 2009, 3, 3832–3838.

    Article  Google Scholar 

  7. Zhu, T. T.; Zhang, B. W.; Zhang, J.; Lu, J.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K. Two-step nucleation of CdS magic-size nanocluster MSC-311. Chem. Mater. 2017, 29, 5727–5735.

    Article  Google Scholar 

  8. Zhang, B. W.; Zhu, T. T.; Ou, M. Y.; Rowell, N.; Fan, H. S.; Han, J. T.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X. B. et al. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nat. Commun. 2018, 9, 2499.

    Article  Google Scholar 

  9. Zhang, J.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H. S.; Zhang, C. C.; Hu, C. W.; Zhang, M.; Yu, K. Individual pathways in the formation of magic-size clusters and conventional quantum dots. J. Phys. Chem. Lett. 2018, 9, 3660–3666.

    Article  Google Scholar 

  10. Nevers, D. R.; Williamson, C. B.; Savitzky, B. H.; Hadar, I.; Banin, U.; Kourkoutis, L. F.; Hanrath, T.; Robinson, R. D. Mesophase formation stabilizes high-purity magic-sized clusters. J. Am. Chem. Soc. 2018, 140, 3652–3662.

    Article  Google Scholar 

  11. Yu, W. W.; Peng X. G. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002, 41, 2368–2371.

    Article  Google Scholar 

  12. Pan, D. C.; Ji, X. L.; An, L. J.; Lu, Y. F. Observation of nucleation and growth of CdS nanocrystals in a two-phase system. Chem. Mater. 2008, 20, 3560–3566.

    Article  Google Scholar 

  13. Ouyang, J. Y.; Kuijper, J.; Brot, S.; Kingston, D.; Wu, X. H.; Leek, D. M.; Hu, M. Z.; Ripmeester, J. A.; Yu, K. Photoluminescent colloidal CdS nano-crystals with high quality via noninjection one-pot synthesis in 1-octadecene. J. Phys. Chem. C 2009, 113, 7579–7593.

    Article  Google Scholar 

  14. Yu, Q. Y.; Liu, C. Y. Study of magic-size-cluster mediated formation of CdS nanocrystals: Properties of the magic-size clusters and mechanism implication. J. Phys. Chem. C 2009, 113, 12766–12771.

    Article  Google Scholar 

  15. Zanella, M.; Abbasi, A. Z.; Schaper, A. K.; Parak, W. J. Discontinuous growth of II–VI semiconductor nanocrystals from different materials. J. Phys. Chem. C 2010, 114, 6205–6215.

    Article  Google Scholar 

  16. Fojtik, A.; Weller, H.; Koch, U.; Henglein, A. Photo-chemistry of colloidal metal sulfides 8. photo-physics of extremely small CdS particles: Q-state CdS and magic agglomeration numbers. Ber. Bunsenges. Phys. Chem. 1984, 88, 969–977.

    Article  Google Scholar 

  17. Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmueller, A.; Weller, H. CdS nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 1994, 98, 7665–7673.

    Article  Google Scholar 

  18. Samanta, A; Deng, Z. T.; Liu, Y.; Yan, H. A perspective on functionalizing colloidal quantum dots with DNA. Nano Res. 2013, 6, 853–870.

    Article  Google Scholar 

  19. Zhang, L. B.; Jean, S. R.; Ahmed, S.; Aldridge, P. M.; Li, X. Y.; Fan, F. J.; Sargent, E. H.; Kelley, S. O. Multifunctional quantum dot DNA hydrogels. Nat. Commun. 2017, 8, 381.

    Article  Google Scholar 

  20. Luo, W. N.; Jiu, T. G.; Kuang, C. Y.; Li, B. R.; Lu, F. S.; Fang, J. F. Dithiol treatments enhancing the efficiency of hybrid solar cells based on PTB7 and CdSe nanorods. Nano Res. 2015, 8, 3045–3053.

    Article  Google Scholar 

  21. Yang, Z. Y.; Fan, J. Z.; Proppe, A. H.; de Arquer, F. P. G.; Rossouw, D.; Voznyy, O.; Lan, X. Z.; Liu, M.; Walters, G.; Quintero-Bermudez, R. et al. Mixed-quantum-dot solar cells. Nat. Commun. 2017, 8, 1325.

    Article  Google Scholar 

  22. Empedocles, S A.; Neuhauser, R.; Shimizu, K. T.; Bawendi, M. G. Photoluminescence from single semiconductor nanostructures. Adv. Mater. 1999, 11, 1243–1256.

    Article  Google Scholar 

  23. Cui, J.; Beyler, A. P.; Marshall, L. F.; Chen, O.; Harris, D. K.; Wanger, D. D.; Brokmann, X.; Bawendi, M. G. Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nat. Chem. 2013, 5, 602–606.

    Article  Google Scholar 

  24. Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 2004, 3, 99–102.

    Article  Google Scholar 

  25. Beecher, A. N.; Yang, X. H.; Palmer, J. H.; LaGrassa, A. L.; Juhas, P.; Billinge, S. J. L.; Owen, J. S. Atomic structures and gram scale synthesis of three tetrahedral quantum dots. J. Am. Chem. Soc. 2014, 136, 10645–10653.

    Article  Google Scholar 

  26. Ekimov, A. I.; Hache, F.; Schanne-Klein, M. C.; Ricard, D.; Flytzanis, C.; Kudryavtsev, I. A.; Yazeva, T. V.; Rodina, A. V.; Efros, A. L. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: Assignment of the first electronic transitions. J. Opt. Soc. Am. B 1993, 10, 100–107.

    Article  Google Scholar 

  27. Norris, D. J.; Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 1996, 53, 16338–16346.

    Article  Google Scholar 

  28. Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.

    Article  Google Scholar 

  29. Wang, L. X.; Hui, J.; Tang, J. B.; Rowell, N.; Zhang, B. W.; Zhu, T. T.; Zhang, M.; Hao, X. Y.; Fan, H. S.; Zeng, J. R. et al. Precursor self-assembly identified as a general pathway for colloidal semiconductor magic-size clusters. Adv. Sci. 2018, 5, 1800632.

    Article  Google Scholar 

  30. LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

    Article  Google Scholar 

  31. van Embden, J.; Mulvaney, P. Nucleation and growth of CdSe nanocrystals in a binary ligand system. Langmuir 2005, 21, 10226–10233.

    Article  Google Scholar 

  32. Steckel, J. S.; Yen, B. K. H.; Oertel, D. C.; Bawendi, M. G On the mechanism of lead chalcogenide nanocrystal formation. J. Am. Chem. Soc. 2006, 128, 13032–13033.

    Article  Google Scholar 

  33. García-Rodríguez, R.; Hendricks, M. P.; Cossairt, B. M.; Liu, H. T.; Owen, J. S. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem. Mater. 2013, 25, 1233–1249.

    Article  Google Scholar 

  34. Yu, K.; Liu, X. Y.; Chen, Q. Y.; Yang, H. Q.; Yang, M. L.; Wang, X. Q.; Wang, X.; Cao, H.; Whitfield, D. M.; Hu, C. W. et al. Mechanistic study of the role of primary amines in precursor conversions to semiconductor nanocrystals at low temperature. Angew. Chem., Int. Ed. 2014, 53, 6898–6904.

    Article  Google Scholar 

  35. Yu, K.; Liu, X. Y.; Qi, T.; Yang, H. Q.; Whitfield, D. M.; Chen, Q. Y.; Huisman, E. J. C.; Hu, C. W. General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals. Nat. Commun. 2016, 7, 12223.

    Article  Google Scholar 

  36. Xie, L. S.; Shen, Y.; Franke, D.; Sebastián, V.; Bawendi, M. G.; Jensen, K. F. Characterization of indium phosphide quantum dot growth intermediates using MALDI-TOF mass spectrometry. J. Am. Chem. Soc. 2016, 138, 13469–13472.

    Article  Google Scholar 

  37. Bowers, M. J.; McBride, J. R.; Rosenthal, S. J. White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc. 2005, 127, 15378–15379.

    Article  Google Scholar 

  38. Cossairt, B. M.; Owen, J. S. CdSe clusters: At the interface of small molecules and quantum dots. Chem. Mater. 2011, 23, 3114–3119.

    Article  Google Scholar 

  39. Rosson, T. E.; Claiborne, S. M.; McBride, J. R.; Stratton, B. S.; Rosenthal, S. J. Bright white light emission from ultrasmall cadmium selenide nanocrystals. J. Am. Chem. Soc. 2012, 134, 8006–8009.

    Article  Google Scholar 

  40. Dolai, S.; Nimmala, P. R.; Mandal, M.; Muhoberac, B. B.; Dria, K.; Dass, A.; Sardar, R. Isolation of bright blue light-emitting CdSe nanocrystals with 6.5 kDa core in gram scale: High photoluminescence efficiency controlled by surface ligand chemistry. Chem. Mater. 2014, 26, 1278–1285.

    Article  Google Scholar 

  41. Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

    Article  Google Scholar 

  42. Jasieniak, J.; Smith, L.; van Embden, J.; Mulvaney, P. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 2009, 113, 19468–19474.

    Article  Google Scholar 

  43. Ouyang, J. Y.; Zaman, M. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 2008, 112, 13805–13811.

    Article  Google Scholar 

  44. Yu, K.; Ouyang, J. Y.; Zaman, M. B.; Johnston, D.; Yan, F. J.; Li, G.; Ratcliffe, C. I.; Leek, D. M.; Wu, X. H.; Stupak, J. et al. Single-sized CdSe nanocrystals with bandgap photoemission via a noninjection one-pot approach. J. Phys. Chem. C 2009, 113, 3390–3401.

    Article  Google Scholar 

  45. Yu, K.; Hu, M. Z.; Wang, R. B.; Le Piolet, M.; Frotey, M.; Zaman, M. B.; Wu, X. H.; Leek, D. M.; Tao, Y.; Wilkinson, D. et al. Thermodynamic equilibrium-driven formation of single-sized nanocrystals: Reaction media tuning CdSe magic-sized versus regular quantum dots. J. Phys. Chem. C 2010, 114, 3329–3339.

    Article  Google Scholar 

  46. Liu, Y. H.; Wang, F. D.; Wang, Y. Y.; Gibbons, P. C.; Buhro, W. E. Lamellar assembly of cadmium selenide nanoclusters into quantum belts. J. Am. Chem. Soc. 2011, 133, 17005–17013.

    Article  Google Scholar 

  47. Yu, K. CdSe magic-sized nuclei, magic-sized nanoclusters and regular nanocrystals: Monomer effects on nucleation and growth. Adv. Mater. 2012, 24, 1123–1132.

    Article  Google Scholar 

  48. Wang, Y. Y.; Liu, Y. H.; Zhang, Y.; Wang, F. D.; Kowalski, P. J.; Rohrs, H. W.; Loomis, R. A.; Gross, M. L.; Buhro, W. E. Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew. Chem., Int. Ed. 2012, 51, 6154–6157.

    Article  Google Scholar 

  49. Dolai, S.; Dutta, P.; Muhoberac, B. B.; Irving, C. D.; Sardar, R. Mechanistic study of the formation of bright white light-emitting ultrasmall CdSe nano-crystals: Role of phosphine free selenium precursors. Chem. Mater. 2015, 27, 1057–1070.

    Article  Google Scholar 

  50. Zhu, D. K.; Hui, J.; Rowell, N.; Liu, Y. Y.; Chen, Q. Y.; Steegemans, T.; Fan, H. S.; Zhang, M.; Yu, K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters. J. Phys. Chem. Lett. 2018, 9, 2818–2824.

    Article  Google Scholar 

  51. Hsieh, T. E.; Yang, T. W.; Hsieh, C. Y.; Huang, S. J.; Yeh, Y. Q.; Chen, C. H.; Li, E. Y.; Liu, Y. H. Unraveling the structure of magic-size (CdSe)13 cluster pairs. Chem. Mater. 2018, 30, 5468–5477.

    Article  Google Scholar 

  52. Liu, Y. Y.; Willis, M.; Rowell, N.; Luo, W. Z.; Fan, H. S.; Han, S.; Yu, K. Effect of small molecule additives in the prenucleation stage of semiconductor CdSe quantum dots. J. Phys. Chem. Lett. 2018, 9, 6356–6363.

    Article  Google Scholar 

  53. Wang, R. B.; Ouyang, J. Y.; Nikolaus, S.; Brestaz, L.; Zaman, M. B.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Yu, K. Single-sized colloidal CdTe nanocrystals with strong bandgap photoluminescence. Chem. Commun. 2009, 962–964.

    Google Scholar 

Download references

Acknowledgements

K. Y. acknowledges financial support from the National Natural Science Foundation of China(Nos. 21773162 and 21573155), the Fundamental Research Funds for the Central Universities (No. SCU2015A002), the State Key Laboratory of Polymer Materials Engineering of Sichuan University (No. sklpme2018-2-08), and the Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University for SKLSSM 201830. H. F. and W. H. thank the National Major Scientific and Technological Special Project for “Significant New Drugs Development” (Nos. 2018ZX09201009-005-004 and 2018ZX09201009-005-001). We thank Sichuan Univ of Analytical & Testing Center. We are in debt to Dr. Shanling Wang (Analytical & Testing Center, Sichuan University) for TEM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqin Chen or Kui Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Hui, J., Zhang, M. et al. CdS magic-size clusters exhibiting one sharp ultraviolet absorption singlet peaking at 361 nm. Nano Res. 12, 1437–1444 (2019). https://doi.org/10.1007/s12274-019-2386-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2386-8

Keywords

Navigation