Advertisement

CdS magic-size clusters exhibiting one sharp ultraviolet absorption singlet peaking at 361 nm

  • Junbin Tang
  • Juan Hui
  • Meng Zhang
  • Hongsong Fan
  • Nelson Rowell
  • Wen Huang
  • Yingnan Jiang
  • Xiaoqin ChenEmail author
  • Kui YuEmail author
Research Article

Abstract

We report, for the first time, the synthesis of CdS magic-size clusters (MSCs) which exhibit a single sharp absorption peaking at ∼ 361 nm, along with sharp band edge photoemission at ∼ 377 nm and broad trap emission peaking at ∼ 490 nm. These MSCs are produced in a single-ensemble form without the contamination of conventional quantum dots (QDs) and/or other-bandgap clusters. They are denoted as MSC-361. We present the details of several controlled syntheses done in oleylamine (OLA), using Cd(NO3)2 or Cd(OAc)2 as a Cd source and thioacetamide (TAA) or elementary sulfur (S) as a S source. A high synthetic reproducibility of the reaction of Cd(NO3)2 and TAA to single-ensemble MSC-361 is achieved, the product of which is not contaminated by other bandgap clusters and/or QDs. In some cases, the reaction product exhibits an additional absorption peak at ∼ 322 nm. We demonstrate that the two peaks, at 361 and 322 nm, do not evolve synchronously. Therefore, the 322 nm peak is not a higher order electronic transition of MSC-361, but due to the presence of another ensemble, namely MSC-322. The present study suggests that there is an outstanding need for the development of a physical model to narrow the knowledge gap regarding the electronic structure in these colloidal semiconductor CdS MSCs.

KeyWords

colloidal semiconductor CdS magic-size clusters (MSCs) MSC-361 quantum dots (QDs) electronic structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

K. Y. acknowledges financial support from the National Natural Science Foundation of China(Nos. 21773162 and 21573155), the Fundamental Research Funds for the Central Universities (No. SCU2015A002), the State Key Laboratory of Polymer Materials Engineering of Sichuan University (No. sklpme2018-2-08), and the Open Project of Key State Laboratory for Supramolecular Structures and Materials of Jilin University for SKLSSM 201830. H. F. and W. H. thank the National Major Scientific and Technological Special Project for “Significant New Drugs Development” (Nos. 2018ZX09201009-005-004 and 2018ZX09201009-005-001). We thank Sichuan Univ of Analytical & Testing Center. We are in debt to Dr. Shanling Wang (Analytical & Testing Center, Sichuan University) for TEM.

Supplementary material

12274_2019_2386_MOESM1_ESM.pdf (3.5 mb)
CdS magic-size clusters exhibiting one sharp ultraviolet absorption singlet peaking at 361 nm

References

  1. [1]
    Zhang, H. T.; Hyun, B. R.; Wise, F. W.; Robinson, R. D. A generic method for rational scalable synthesis of monodisperse metal sulfide nanocrystals. Nano Lett. 2012, 12, 5856–5860.CrossRefGoogle Scholar
  2. [2]
    Wang, Y.; Zhou, Y.; Zhang, Y; Buhro, W. E. Magic-size II–VI nanoclusters as synthons for flat colloidal nanocrystals. Inorg. Chem. 2015, 54, 1165–1177.CrossRefGoogle Scholar
  3. [3]
    Nevers, D. R.; Williamson, C. B.; Hanrath, T.; Robinson, R. D. Surface chemistry of cadmium sulfide magic-sized clusters: A window into ligand-nanoparticle interactions. Chem. Commun. 2017, 53, 2866–2869.CrossRefGoogle Scholar
  4. [4]
    Son, J. S.; Park, K.; Kwon, S. G.; Yang, J.; Choi, M. K.; Kim, J.; Yu, J. H.; Joo, J.; Hyeon, T. Dimension-controlled synthesis of CdS nanocrystals: From 0D quantum dots to 2D nanoplates. Small 2012, 8, 2394–2402.CrossRefGoogle Scholar
  5. [5]
    Li, Z.; Qin, H. Y.; Guzun, D.; Benamara, M.; Salamo, G.; Peng, X. G. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 2012, 5, 337–351.CrossRefGoogle Scholar
  6. [6]
    Li, M. J.; Ouyang, J. Y.; Ratcliffe, C. I.; Pietri, L.; Wu, X. H.; Leek, D. M.; Moudrakovski, I.; Lin, Q.; Yang, B.; Yu, K. CdS magic-sized nanocrystals exhibiting bright band gap photoemission via thermodynamically driven formation. ACS Nano 2009, 3, 3832–3838.CrossRefGoogle Scholar
  7. [7]
    Zhu, T. T.; Zhang, B. W.; Zhang, J.; Lu, J.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Han, S.; Yu, K. Two-step nucleation of CdS magic-size nanocluster MSC-311. Chem. Mater. 2017, 29, 5727–5735.CrossRefGoogle Scholar
  8. [8]
    Zhang, B. W.; Zhu, T. T.; Ou, M. Y.; Rowell, N.; Fan, H. S.; Han, J. T.; Tan, L.; Dove, M. T.; Ren, Y.; Zuo, X. B. et al. Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters. Nat. Commun. 2018, 9, 2499.CrossRefGoogle Scholar
  9. [9]
    Zhang, J.; Hao, X. Y.; Rowell, N.; Kreouzis, T.; Han, S.; Fan, H. S.; Zhang, C. C.; Hu, C. W.; Zhang, M.; Yu, K. Individual pathways in the formation of magic-size clusters and conventional quantum dots. J. Phys. Chem. Lett. 2018, 9, 3660–3666.CrossRefGoogle Scholar
  10. [10]
    Nevers, D. R.; Williamson, C. B.; Savitzky, B. H.; Hadar, I.; Banin, U.; Kourkoutis, L. F.; Hanrath, T.; Robinson, R. D. Mesophase formation stabilizes high-purity magic-sized clusters. J. Am. Chem. Soc. 2018, 140, 3652–3662.CrossRefGoogle Scholar
  11. [11]
    Yu, W. W.; Peng X. G. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Ed. 2002, 41, 2368–2371.CrossRefGoogle Scholar
  12. [12]
    Pan, D. C.; Ji, X. L.; An, L. J.; Lu, Y. F. Observation of nucleation and growth of CdS nanocrystals in a two-phase system. Chem. Mater. 2008, 20, 3560–3566.CrossRefGoogle Scholar
  13. [13]
    Ouyang, J. Y.; Kuijper, J.; Brot, S.; Kingston, D.; Wu, X. H.; Leek, D. M.; Hu, M. Z.; Ripmeester, J. A.; Yu, K. Photoluminescent colloidal CdS nano-crystals with high quality via noninjection one-pot synthesis in 1-octadecene. J. Phys. Chem. C 2009, 113, 7579–7593.CrossRefGoogle Scholar
  14. [14]
    Yu, Q. Y.; Liu, C. Y. Study of magic-size-cluster mediated formation of CdS nanocrystals: Properties of the magic-size clusters and mechanism implication. J. Phys. Chem. C 2009, 113, 12766–12771.CrossRefGoogle Scholar
  15. [15]
    Zanella, M.; Abbasi, A. Z.; Schaper, A. K.; Parak, W. J. Discontinuous growth of II–VI semiconductor nanocrystals from different materials. J. Phys. Chem. C 2010, 114, 6205–6215.CrossRefGoogle Scholar
  16. [16]
    Fojtik, A.; Weller, H.; Koch, U.; Henglein, A. Photo-chemistry of colloidal metal sulfides 8. photo-physics of extremely small CdS particles: Q-state CdS and magic agglomeration numbers. Ber. Bunsenges. Phys. Chem. 1984, 88, 969–977.CrossRefGoogle Scholar
  17. [17]
    Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmueller, A.; Weller, H. CdS nanoclusters: Synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 1994, 98, 7665–7673.CrossRefGoogle Scholar
  18. [18]
    Samanta, A; Deng, Z. T.; Liu, Y.; Yan, H. A perspective on functionalizing colloidal quantum dots with DNA. Nano Res. 2013, 6, 853–870.CrossRefGoogle Scholar
  19. [19]
    Zhang, L. B.; Jean, S. R.; Ahmed, S.; Aldridge, P. M.; Li, X. Y.; Fan, F. J.; Sargent, E. H.; Kelley, S. O. Multifunctional quantum dot DNA hydrogels. Nat. Commun. 2017, 8, 381.CrossRefGoogle Scholar
  20. [20]
    Luo, W. N.; Jiu, T. G.; Kuang, C. Y.; Li, B. R.; Lu, F. S.; Fang, J. F. Dithiol treatments enhancing the efficiency of hybrid solar cells based on PTB7 and CdSe nanorods. Nano Res. 2015, 8, 3045–3053.CrossRefGoogle Scholar
  21. [21]
    Yang, Z. Y.; Fan, J. Z.; Proppe, A. H.; de Arquer, F. P. G.; Rossouw, D.; Voznyy, O.; Lan, X. Z.; Liu, M.; Walters, G.; Quintero-Bermudez, R. et al. Mixed-quantum-dot solar cells. Nat. Commun. 2017, 8, 1325.CrossRefGoogle Scholar
  22. [22]
    Empedocles, S A.; Neuhauser, R.; Shimizu, K. T.; Bawendi, M. G. Photoluminescence from single semiconductor nanostructures. Adv. Mater. 1999, 11, 1243–1256.CrossRefGoogle Scholar
  23. [23]
    Cui, J.; Beyler, A. P.; Marshall, L. F.; Chen, O.; Harris, D. K.; Wanger, D. D.; Brokmann, X.; Bawendi, M. G. Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nat. Chem. 2013, 5, 602–606.CrossRefGoogle Scholar
  24. [24]
    Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 2004, 3, 99–102.CrossRefGoogle Scholar
  25. [25]
    Beecher, A. N.; Yang, X. H.; Palmer, J. H.; LaGrassa, A. L.; Juhas, P.; Billinge, S. J. L.; Owen, J. S. Atomic structures and gram scale synthesis of three tetrahedral quantum dots. J. Am. Chem. Soc. 2014, 136, 10645–10653.CrossRefGoogle Scholar
  26. [26]
    Ekimov, A. I.; Hache, F.; Schanne-Klein, M. C.; Ricard, D.; Flytzanis, C.; Kudryavtsev, I. A.; Yazeva, T. V.; Rodina, A. V.; Efros, A. L. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: Assignment of the first electronic transitions. J. Opt. Soc. Am. B 1993, 10, 100–107.CrossRefGoogle Scholar
  27. [27]
    Norris, D. J.; Bawendi, M. G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 1996, 53, 16338–16346.CrossRefGoogle Scholar
  28. [28]
    Liu, M. Y.; Wang, K.; Wang, L. X.; Han, S.; Fan, H. S.; Rowell, N.; Ripmeester, J. A.; Renoud, R.; Bian, F. G.; Zeng, J. R. et al. Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nat. Commun. 2017, 8, 15467.CrossRefGoogle Scholar
  29. [29]
    Wang, L. X.; Hui, J.; Tang, J. B.; Rowell, N.; Zhang, B. W.; Zhu, T. T.; Zhang, M.; Hao, X. Y.; Fan, H. S.; Zeng, J. R. et al. Precursor self-assembly identified as a general pathway for colloidal semiconductor magic-size clusters. Adv. Sci. 2018, 5, 1800632.CrossRefGoogle Scholar
  30. [30]
    LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.CrossRefGoogle Scholar
  31. [31]
    van Embden, J.; Mulvaney, P. Nucleation and growth of CdSe nanocrystals in a binary ligand system. Langmuir 2005, 21, 10226–10233.CrossRefGoogle Scholar
  32. [32]
    Steckel, J. S.; Yen, B. K. H.; Oertel, D. C.; Bawendi, M. G On the mechanism of lead chalcogenide nanocrystal formation. J. Am. Chem. Soc. 2006, 128, 13032–13033.CrossRefGoogle Scholar
  33. [33]
    García-Rodríguez, R.; Hendricks, M. P.; Cossairt, B. M.; Liu, H. T.; Owen, J. S. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem. Mater. 2013, 25, 1233–1249.CrossRefGoogle Scholar
  34. [34]
    Yu, K.; Liu, X. Y.; Chen, Q. Y.; Yang, H. Q.; Yang, M. L.; Wang, X. Q.; Wang, X.; Cao, H.; Whitfield, D. M.; Hu, C. W. et al. Mechanistic study of the role of primary amines in precursor conversions to semiconductor nanocrystals at low temperature. Angew. Chem., Int. Ed. 2014, 53, 6898–6904.CrossRefGoogle Scholar
  35. [35]
    Yu, K.; Liu, X. Y.; Qi, T.; Yang, H. Q.; Whitfield, D. M.; Chen, Q. Y.; Huisman, E. J. C.; Hu, C. W. General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals. Nat. Commun. 2016, 7, 12223.CrossRefGoogle Scholar
  36. [36]
    Xie, L. S.; Shen, Y.; Franke, D.; Sebastián, V.; Bawendi, M. G.; Jensen, K. F. Characterization of indium phosphide quantum dot growth intermediates using MALDI-TOF mass spectrometry. J. Am. Chem. Soc. 2016, 138, 13469–13472.CrossRefGoogle Scholar
  37. [37]
    Bowers, M. J.; McBride, J. R.; Rosenthal, S. J. White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc. 2005, 127, 15378–15379.CrossRefGoogle Scholar
  38. [38]
    Cossairt, B. M.; Owen, J. S. CdSe clusters: At the interface of small molecules and quantum dots. Chem. Mater. 2011, 23, 3114–3119.CrossRefGoogle Scholar
  39. [39]
    Rosson, T. E.; Claiborne, S. M.; McBride, J. R.; Stratton, B. S.; Rosenthal, S. J. Bright white light emission from ultrasmall cadmium selenide nanocrystals. J. Am. Chem. Soc. 2012, 134, 8006–8009.CrossRefGoogle Scholar
  40. [40]
    Dolai, S.; Nimmala, P. R.; Mandal, M.; Muhoberac, B. B.; Dria, K.; Dass, A.; Sardar, R. Isolation of bright blue light-emitting CdSe nanocrystals with 6.5 kDa core in gram scale: High photoluminescence efficiency controlled by surface ligand chemistry. Chem. Mater. 2014, 26, 1278–1285.CrossRefGoogle Scholar
  41. [41]
    Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.CrossRefGoogle Scholar
  42. [42]
    Jasieniak, J.; Smith, L.; van Embden, J.; Mulvaney, P. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 2009, 113, 19468–19474.CrossRefGoogle Scholar
  43. [43]
    Ouyang, J. Y.; Zaman, M. B.; Yan, F. J.; Johnston, D.; Li, G.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Ripmeester, J. A.; Yu, K. Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 2008, 112, 13805–13811.CrossRefGoogle Scholar
  44. [44]
    Yu, K.; Ouyang, J. Y.; Zaman, M. B.; Johnston, D.; Yan, F. J.; Li, G.; Ratcliffe, C. I.; Leek, D. M.; Wu, X. H.; Stupak, J. et al. Single-sized CdSe nanocrystals with bandgap photoemission via a noninjection one-pot approach. J. Phys. Chem. C 2009, 113, 3390–3401.CrossRefGoogle Scholar
  45. [45]
    Yu, K.; Hu, M. Z.; Wang, R. B.; Le Piolet, M.; Frotey, M.; Zaman, M. B.; Wu, X. H.; Leek, D. M.; Tao, Y.; Wilkinson, D. et al. Thermodynamic equilibrium-driven formation of single-sized nanocrystals: Reaction media tuning CdSe magic-sized versus regular quantum dots. J. Phys. Chem. C 2010, 114, 3329–3339.CrossRefGoogle Scholar
  46. [46]
    Liu, Y. H.; Wang, F. D.; Wang, Y. Y.; Gibbons, P. C.; Buhro, W. E. Lamellar assembly of cadmium selenide nanoclusters into quantum belts. J. Am. Chem. Soc. 2011, 133, 17005–17013.CrossRefGoogle Scholar
  47. [47]
    Yu, K. CdSe magic-sized nuclei, magic-sized nanoclusters and regular nanocrystals: Monomer effects on nucleation and growth. Adv. Mater. 2012, 24, 1123–1132.CrossRefGoogle Scholar
  48. [48]
    Wang, Y. Y.; Liu, Y. H.; Zhang, Y.; Wang, F. D.; Kowalski, P. J.; Rohrs, H. W.; Loomis, R. A.; Gross, M. L.; Buhro, W. E. Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew. Chem., Int. Ed. 2012, 51, 6154–6157.CrossRefGoogle Scholar
  49. [49]
    Dolai, S.; Dutta, P.; Muhoberac, B. B.; Irving, C. D.; Sardar, R. Mechanistic study of the formation of bright white light-emitting ultrasmall CdSe nano-crystals: Role of phosphine free selenium precursors. Chem. Mater. 2015, 27, 1057–1070.CrossRefGoogle Scholar
  50. [50]
    Zhu, D. K.; Hui, J.; Rowell, N.; Liu, Y. Y.; Chen, Q. Y.; Steegemans, T.; Fan, H. S.; Zhang, M.; Yu, K. Interpreting the ultraviolet absorption in the spectrum of 415 nm-bandgap CdSe magic-size clusters. J. Phys. Chem. Lett. 2018, 9, 2818–2824.CrossRefGoogle Scholar
  51. [51]
    Hsieh, T. E.; Yang, T. W.; Hsieh, C. Y.; Huang, S. J.; Yeh, Y. Q.; Chen, C. H.; Li, E. Y.; Liu, Y. H. Unraveling the structure of magic-size (CdSe)13 cluster pairs. Chem. Mater. 2018, 30, 5468–5477.CrossRefGoogle Scholar
  52. [52]
    Liu, Y. Y.; Willis, M.; Rowell, N.; Luo, W. Z.; Fan, H. S.; Han, S.; Yu, K. Effect of small molecule additives in the prenucleation stage of semiconductor CdSe quantum dots. J. Phys. Chem. Lett. 2018, 9, 6356–6363.CrossRefGoogle Scholar
  53. [53]
    Wang, R. B.; Ouyang, J. Y.; Nikolaus, S.; Brestaz, L.; Zaman, M. B.; Wu, X. H.; Leek, D.; Ratcliffe, C. I.; Yu, K. Single-sized colloidal CdTe nanocrystals with strong bandgap photoluminescence. Chem. Commun. 2009, 962–964.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Junbin Tang
    • 1
  • Juan Hui
    • 1
  • Meng Zhang
    • 1
  • Hongsong Fan
    • 2
  • Nelson Rowell
    • 3
  • Wen Huang
    • 4
  • Yingnan Jiang
    • 5
  • Xiaoqin Chen
    • 2
    Email author
  • Kui Yu
    • 1
    • 2
    • 6
    Email author
  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina
  2. 2.Engineering Research Center in BiomaterialsSichuan UniversityChengduChina
  3. 3.Metrology Research CentreNational Research Council of CanadaOttawaCanada
  4. 4.Laboratory of Ethnopharmacology, West China School of MedicineSichuan UniversityChengduChina
  5. 5.Jilin Ginseng AcademyChangchun University of Chinese MedicineChangchunChina
  6. 6.State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduChina

Personalised recommendations