Skip to main content
Log in

Stepwise magnetization reversal of geometrically tuned in diameter Ni and FeCo bi-segmented nanowire arrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Magnetization reversal processes of hexagonal dense arrays of bi-segmented Ni and Fe50Co50 nanowires consisting of two well defined diameters (45 and 80 nm) have been studied. The nanowires were grown inside of tailored pores of anodic alumina templates by combined anodization, atomic layer deposition (ALD) and electrodeposition techniques. The experiments have allowed to identify their two-step magnetization reversal process ascribed to the respective segments of different diameter. This is concluded from the differential susceptibility observed in the hysteresis loops, contrary to those for nanowires with homogeneous diameter. These results are also confirmed by the first-order reversal curve (FORC) distribution diagrams, where an elongation parallel to the interaction axis around two coercive field values is obtained, which is correlated to the difference in diameter of the two segments. This well-defined two-step magnetization reversal process through the nanowire diameter design is thought to be very useful for the advanced control of the remagnetization in arrays of magnetic multidomain systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allwood, D. A.; Xiong, G.; Faulkner, C. C.; Atkinson, D.; Petit, D.; Cowburn, R. P. Magnetic domain-wall logic. Science 2005, 309, 1688–1692.

    Article  Google Scholar 

  2. Allwood, D. A.; Xiong, G.; Cowburn, R. P. Writing and erasing data in magnetic domain wall logic systems. J. Appl. Phys. 2006, 100, 123908.

    Article  Google Scholar 

  3. Parkin, S. S. P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194.

    Article  Google Scholar 

  4. Hayashi, M.; Thomas, L.; Moriya, R.; Rettner, C.; Parkin, S. S. P. Current-controlled magnetic domain-wall nanowire shift register. Science 2008, 320, 209–211.

    Article  Google Scholar 

  5. Kou, X. M.; Fan, X.; Dumas, R. K.; Lu, Q.; Zhang, Y. P.; Zhu, H.; Zhang, X. K.; Liu, K.; Xiao, J. Q. Memory effect in magnetic nanowire arrays. Adv. Mater. 2011, 23, 1393–1397.

    Article  Google Scholar 

  6. Lee, D. J.; Kim, E.; Kim, D.; Park, J.; Hong, S. Nano-storage wires. ACS Nano 2013, 7, 6906–6913.

    Article  Google Scholar 

  7. Grutter, A. J.; Krycka, K. L.; Tartakovskaya, E. V.; Borchers, J. A.; Reddy, K. S. M.; Ortega, E.; Ponce, A.; Stadler, B. J. H. Complex three-dimensional magnetic ordering in segmented nanowire arrays. ACS Nano 2017, 11, 8311–8319.

    Article  Google Scholar 

  8. Sergelius, P.; Moreno, J. M. M.; Rahimi, W.; Waleczek, M.; Zierold, R.; Görlitz, D.; Nielsch, K. Electrochemical synthesis of highly ordered nanowires with a rectangular cross section using an in-plane nanochannel array. Nanotechnology 2014, 25, 504002.

    Article  Google Scholar 

  9. Pitzschel, K.; Moreno, J. M. M.; Escrig, J.; Albrecht, O.; Nielsch, K.; Bachmann, J. Controlled introduction of diameter modulations in arrayed magnetic iron oxide nanotubes. ACS Nano 2009, 3, 3463–3468.

    Article  Google Scholar 

  10. Esmaeily, A. S.; Venkatesan, M.; Razavian, A. S.; Coey, J. M. D. Diameter-modulated ferromagnetic CoFe nanowires. J. Appl. Phys. 2013, 113, 17A327.

    Article  Google Scholar 

  11. Minguez-Bacho, I.; Rodriguez-López, S.; Vázquez, M.; Hernández-Vélez, M.; Nielsch, K. Electrochemical synthesis and magnetic characterization of periodically modulated Co nanowires. Nanotechnology 2014, 25, 145301.

    Article  Google Scholar 

  12. Prida, V. M.; García, J.; Iglesias, L.; Vega, V.; Görlitz, D.; Nielsch, K.; Barriga-Castro, E. D.; Mendoza-Reséndez, R.; Ponce, A.; Luna, C. Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina templates. Nanoscale Res. Lett. 2013, 8, 263.

    Article  Google Scholar 

  13. Méndez, M.; González, S.; Vega, V.; Teixeira, J. M.; Hernando, B.; Luna, C.; Prida, V. M. Ni-Co alloy and multisegmented Ni/Co nanowire arrays modulated in composition: Structural characterization and magnetic properties. Crystals 2017, 7, 66.

    Article  Google Scholar 

  14. Salem, M. S.; Tejo, F.; Zierold, R.; Sergelius, P.; Moreno, J. M. M.; Goerlitz, D.; Nielsch, K.; Escrig, J. Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach. Nanotechnology 2018, 29, 065602.

    Article  Google Scholar 

  15. Neumann, R. F.; Bahiana, M.; Allende, S.; Altbir, D.; Görlitz, D.; Nielsch, K. Tailoring the nucleation of domain walls along multi-segmented cylindrical nanoelements. Nanotechnology 2015, 26, 215701.

    Article  Google Scholar 

  16. Méndez, M.; Vega, V.; González, S.; Caballero-Flores, R.; García, J.; Prida, V. M. Effect of sharp diameter geometrical modulation on the magnetization reversal of bi-segmented FeNi nanowires. Nanomaterials 2018, 8, 595.

    Article  Google Scholar 

  17. Bochmann, S.; Döhler, D.; Trapp, B.; Stano M.; Fruchart, O.; Bachmann J. Preparation and physical properties of soft magnetic nickel-cobalt three-segmented nanowires. J. Appl. Phys. 2018, 124, 163907.

    Article  Google Scholar 

  18. Pitzschel, K.; Bachmann, J.; Martens, S.; Montero-Moreno, J. M.; Kimling, J.; Meier, G.; Escrig, J.; Nielsch, K.; Görlitz, D. Magnetic reversal of cylindrical nickel nanowires with modulated diameters. J. Appl. Phys. 2011, 109, 033907.

    Article  Google Scholar 

  19. Burn, D. M.; Arac, E.; Atkinson, D. Magnetization switching and domain-wall propagation behavior in edge-modulated ferromagnetic nanowire structures. Phys. Rev. B 2013, 88, 104422.

    Article  Google Scholar 

  20. Salem, M. S.; Sergelius, P.; Corona, R. M.; Escrig, J.; Görlitz D.; Nielsch, K. Magnetic properties of cylindrical diameter modulated Ni80Fe20 nanowires: Interaction and coercive fields. Nanoscale 2013, 5, 3941–3947.

    Article  Google Scholar 

  21. Zeng, H.; Michalski, S.; Kirby, R. D.; Sellmeyer, D. J.; Menon, L.; Bandyopadhyay, S. Effects of surface morphology on magnetic properties of Ni nanowire arrays in self-ordered porous alumina. J. Phys. Condens. Mat. 2002, 14, 715–721.

    Article  Google Scholar 

  22. Kumar, A.; Fähler, S.; Schlörb, H.; Leistner, K.; Schultz, L. Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates. Phys. Rev. B 2006, 73, 064421.

    Article  Google Scholar 

  23. Bran, C.; Palmero, E. M.; Li, Z. A.; del Real, R. P.; Spasova, M.; Farle, M.; Vázquez, M. Correlation between structure and magnetic properties in CoxFe100−x nanowires: The roles of composition and wire diameter. J. Phys. D: Appl. Phys. 2015, 48, 145304.

    Article  Google Scholar 

  24. Palmero, E. M.; Bran, C.; del Real, R. P.; Vázquez, M. Vortex domain wall propagation in periodically modulated diameter FeCoCu nanowire as determined by the magneto-optical Kerr effect. Nanotechnology 2015, 26, 461001.

    Article  Google Scholar 

  25. Bran, C.; Berganza, E.; Palmero, E. M.; Fernandez-Roldan, J. A.; del Real, R. P.; Aballe, L.; Foerster, M.; Asenjo, A.; Fraile Rodriguez, A.; Vazquez, M. Spin configuration of cylindrical bamboo-like magnetic nanowires. J. Mater. Chem. C 2016, 4, 978–984.

    Article  Google Scholar 

  26. Hertel, R.; Kirschner, J. Magnetization reversal dynamics in nickel nanowires. Phys B: Condens. Matter 2004, 343, 206–210.

    Article  Google Scholar 

  27. Ivanov, Y. P.; Vázquez, M.; Chubykalo-Fesenko, O. Magnetic reversal modes in cylindrical nanowires. J. Phys. D: Appl. Phys. 2013, 46, 485001.

    Article  Google Scholar 

  28. Bran, C.; Ivanov, Y. P.; García, J.; del Real, R. P.; Prida, V. M.; Chubykalo-Fesenko, O.; Vazquez, M. Tuning the magnetization reversal process of FeCoCu nanowire arrays by thermal annealing. J. Appl. Phys. 2013, 114, 043908.

    Article  Google Scholar 

  29. Vock, S.; Hengst, C.; Wolf, M.; Tschulik, K.; Uhlemann, M.; Sasvári, Z.; Makarov, D.; Schmidt, O. G.; Schultz, L.; Neu, V. Magnetic vortex observation in FeCo nanowires by quantitative magnetic force microscopy. Appl. Phys. Lett. 2014, 105, 172409.

    Article  Google Scholar 

  30. Spinu, L.; Stancu, A.; Radu, C.; Li, F.; Wiley, J. B. Method for magnetic characterization of nanowire structures. IEEE Trans. Magn. 2004, 40, 2116–2118.

    Article  Google Scholar 

  31. Béron, F.; Clime, L.; Ciureanu, M.; Ménard, D.; Cochrane, R. W.; Yelon, A. Magnetostatic interactions and coercivities of ferromagnetic soft nanowires in uniform length arrays. J. Nanosci. Nanotechnol. 2008, 8, 2944–2954.

    Article  Google Scholar 

  32. Navas, D.; Torrejon, J.; Béron, F.; Redondo, C.; Batallan, F.; Toperverg, B. P.; Devishvili, A.; Sierra, B.; Castaño, F.; Pirota, K. R. et al. Magnetization reversal and exchange bias effects in hard/soft ferromagnetic bilayers with orthogonal anisotropies. New J. Phys. 2012, 14, 113001.

    Article  Google Scholar 

  33. Proenca, M. P.; Merazzo, K. J.; Vivas, L. G.; Leitao, D. C.; Sousa, C. T.; Ventura, J.; Araujo, J. P.; Vazquez, M. Co nanostructures in ordered templates: Comparative FORC analysis. Nanotechnology 2013, 24, 475703.

    Article  Google Scholar 

  34. Almasi-Kashi, M.; Ramazani, A.; Golafshan, E.; Arefpour, M.; Jafari-Khamse, E. First order reversal curve investigation of the hard and soft magnetic phases of annealed CoFeCu nanowire arrays. Phys B: Condens. Matter 2013, 429, 46–51.

    Article  Google Scholar 

  35. Palmero, E. M.; Béron, F.; Bran, C.; del Real, R. P.; Vázquez, M. Magnetic interactions in compositionally modulated nanowire arrays. Nanotechnology 2016, 27, 435705.

    Article  Google Scholar 

  36. Béron, F.; Pirota, K. R.; Vega, V.; Prida, V. M.; Fernández, A.; Hernando, B. Knobel, M. An effective method to probe local magnetostatic properties in a nanometric FePd antidot array. New J. Phys. 2011, 13, 013035.

    Article  Google Scholar 

  37. Bachmann, J.; Zierold, R.; Chong, Y. T.; Hauert, R.; Sturm, C.; Schmidt-Grund, R.; Rheinländer, B.; Grundmann, M.; Gösele, U.; Nielsch, K. A practical, self-catalytic, atomic layer deposition of silicon dioxide. Angew. Chem., Int. Ed. 2008, 47, 6177–6179.

    Article  Google Scholar 

  38. Dobrotă, C. I.; Stancu, A. What does a first-order reversal curve diagram really mean? A study case: Array of ferromagnetic nanowires. J. Appl. Phys. 2013, 113, 043928.

    Article  Google Scholar 

  39. Barandiaran, J. M.; Vázquez, M.; Hernando, A.; González, J.; Rivero, G. Distribution of the magnetic anisotropy in amorphous alloys ribbons. IEEE Trans. Magn. 1989, 25, 3330–3332.

    Article  Google Scholar 

  40. Vega, V.; Böhnert, T.; Martens, S.; Waleczek, M.; Montero-Moreno, J. M.; Görlitz, D.; Prida, V. M.; Nielsch, K. Tuning the magnetic anisotropy of Co-Ni nanowires: Comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology 2012, 23, 465709.

    Article  Google Scholar 

  41. Béron, F.; Ménard, D.; Yelon, A. First-order reversal curve diagrams of magnetic entities with mean interaction field: A physical analysis perspective. J. Appl. Phys. 2008, 103, 07D908.

    Article  Google Scholar 

  42. Béron, F.; Carignan, L. P.; Ménard, D.; Yelon, A. Extracting individual properties from global behaviour: First-order reversal curve method applied to magnetic nanowire arrays. In Electrodeposited Nanowires and Their Applications; Lupu, N., Ed.; IntechOpen: Vienna, 2010; pp 167–188.

    Google Scholar 

  43. Rotaru, A.; Lim, J. H.; Lenormand, D.; Diaconu, A.; Wiley, J. B.; Postolache, P.; Stancu, A.; Spinu, L. Interactions and reversal-field memory in complex magnetic nanowire arrays. Phys. Rev. B 2011, 84, 134431.

    Article  Google Scholar 

  44. Samanifar, S.; Almasi Kashi, M.; Ramazani, A.; Alikhani, M. Reversal modes in FeCoNi nanowire arrays: Correlation between magnetostatic interactions and nanowires length. J. Magn. Magn. Mater. 2015, 378, 73–83.

    Article  Google Scholar 

  45. Sergelius, P.; Fernandez, J. G.; Martens, S.; Zocher, M.; Böhnert, T.; Martinez, V. V.; de la Prida, V. M.; Görlitz, D.; Nielsch, K. Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: A comparative study. J. Phys. D: Appl. Phys. 2016, 49, 145005.

    Article  Google Scholar 

  46. Raposo, V.; Zazo, M.; Flores, A. G.; García, J.; Vega, V.; Iñiguez, J.; Prida, V. M. Ferromagnetic resonance in low interacting permalloy nanowire arrays. J. Appl. Phys. 2016, 119, 143903.

    Article  Google Scholar 

  47. Pike, C. R.; Ross, C. A.; Scalettar R. T.; Zimanyi, G. First-order reversal curve diagram analysis of a perpendicular nickel nanopillar array. Phys. Rev. B 2005, 71, 134407.

    Article  Google Scholar 

  48. García, J.; Vega, V.; Thomas, A.; Prida, V. M.; Nielsch, K. Two-step magnetization reversal FORC fingerprint of coupled bi-segmented Ni/Co magnetic nanowire arrays. Nanomaterials 2018, 8, 548.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Spanish Ministerio de Economía y Competitividad (MINECO) through the research Projects MAT2013-48054-C2-1-R, MAT2013-48054-C2-2-R, MAT2016-76824-C3-1-R and MAT2016-76824-C3-3-R. The scientific support from the SCTs of the University of Oviedo is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester M. Palmero.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmero, E.M., Méndez, M., González, S. et al. Stepwise magnetization reversal of geometrically tuned in diameter Ni and FeCo bi-segmented nanowire arrays. Nano Res. 12, 1547–1553 (2019). https://doi.org/10.1007/s12274-019-2385-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2385-9

Keywords

Navigation