Skip to main content
Log in

Revealing the crystallization process and realizing uniform 1.8 eV MA-based wide-bandgap mixed-halide perovskites via solution engineering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Wide-bandgap perovskites are recently drawing tremendous attention in the community for high-efficiency all-perovskite tandem solar cells. However, the formamidinium (FA+) and methylammonium (MA+) based wide-bandgap mixed halide perovskites suffered from high density of traps and pin-holes, respectively. Fundamental understanding on the crystallization and film formation processes are keys to overcome those challenges but not yet clearly understood. In this study, an in-situ photoluminescence technique was used to investigate the perovskite crystallization during the thermal annealing process. It is found that the crystallization of a mixed halide perovskite with bromide (Br) and iodine (I) ions following the Ostward ripening crystal growth. Interestingly, it is found that the initial nucleation reaction is quickly completed in the first few seconds, however, leaving the small crystals with inhomogeneous composition. The different aggregation affinities of such inhomogeneous small crystals provoke the formation of pin-holes during the thermal annealing process. By engineering the precursor solution to control the nucleation rate, the chemical composition of the small crystals has become homogenous. Uniform pin-hole free high Br−composited wide-bandgap MA0.9Cs0.1Pb(I0.6Br0.4)3 perovskite films with bandgap energy of 1.8 eV have been realized. The corresponding photovoltaic devices have achieved an encouraging device efficiency of 15.1% with superb photostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, X. W.; Ma, C. Q.; Xie, Y.-M.; Cheng, Y. H.; Tian, Y. M.; Li, M. L.; Ma, Y. H.; Lee, C.-S.; Tsang, S.-W. Air-processed mixed-cation Cs0.15FA0.85PbI3 planar perovskite solar cells derived from a PbI2-CsI-FAI intermediate complex. J. Mater. Chem. A 2018, 6, 7731–7740.

    Article  Google Scholar 

  2. Li, M.; Wang, Z.-K.; Zhuo, M.-P.; Hu, Y.; Hu, K.-H.; Ye, Q.-Q.; Jain, S. M.; Yang, Y.-G.; Gao, X.-Y.; Liao, L.-S. Pb-Sn-Cu ternary organometallic halide perovskite solar cells. Adv. Mater. 2018, 30, 1800258.

    Article  Google Scholar 

  3. Cheng, Y. H.; Xu, X. W.; Xie, Y. M.; Li, H. W.; Qing, J.; Ma, C. Q.; Lee, C. S.; So, F.; Tsang, S. W. 18% high-efficiency air-processed perovskite solar cells made in a humid atmosphere of 70% RH. Solar RRL 2017, 1, 1700097.

    Article  Google Scholar 

  4. Wang, C. L.; Zhao, D. W.; Yu, Y.; Shrestha, N.; Grice, C. R.; Liao, W. Q.; Cimaroli, A. J.; Chen, J.; Ellingson, R. J.; Zhao, X. Z. et al. Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis. Nano Energy 2017, 35, 223–232.

    Article  Google Scholar 

  5. Jin, Y. X.; Sun, Y.; Wang, K. Q.; Chen, Y.; Liang, Z. Q.; Xu, Y. X.; Xiao, F. Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells. Nano Res. 2018, 11, 1998–2011.

    Article  Google Scholar 

  6. Huang, D.; Goh, T.; Zheng, Y. F.; Qin, Z. L.; Zhao, J.; Zhao, S. L.; Xu, Z.; Taylor, A. D. An additive dripping technique using diphenyl ether for tuning perovskite crystallization for high-efficiency solar cells. Nano Res. 2018, 11, 2648–2657.

    Article  Google Scholar 

  7. Xu, X.; Li, K.; Yang, Z. Z.; Shi, J. J.; Li, D. M.; Gu, L.; Wu, Z. J.; Meng, Q. B. Methylammonium cation deficient surface for enhanced binding stability at TiO2/CH3NH3PbI3 interface. Nano Res. 2017, 10, 483–490.

    Article  Google Scholar 

  8. Bailie, C. D.; McGehee, M. D. High-efficiency tandem perovskite solar cells. MRS Bull. 2015, 40, 681–686.

    Article  Google Scholar 

  9. McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155.

    Article  Google Scholar 

  10. Zuo, C. T.; Ding, L. M. Lead-free perovskite materials (NH4)3Sb2IxBr9−x. Angew. Chem. 2017, 129, 6628–6632.

    Article  Google Scholar 

  11. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

    Article  Google Scholar 

  12. Li, Y. L.; Sun, W. H.; Yan, W. B.; Ye, S. Y.; Rao, H. X.; Peng, H. T.; Zhao, Z. R.; Bian, Z. Q.; Liu, Z. W.; Zhou, H. P. et al. 50% Sn-based planar perovskite solar cell with power conversion efficiency up to 13.6%. Adv. Energy Mater. 2016, 6, 1601353.

    Article  Google Scholar 

  13. Liu, M. Y.; Chen, Z. M.; Xue, Q. F.; Cheung, S. H.; So, S. K.; Yip, H.-L.; Cao, Y. High performance low-bandgap perovskite solar cells based on a high-quality mixed Sn-Pb perovskite film prepared by vacuum-assisted thermal annealing. J. Mater. Chem. A 2018, 6, 16347–16354.

    Article  Google Scholar 

  14. Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379.

    Article  Google Scholar 

  15. Tan, H. R.; Che, F. L.; Wei, M. Y.; Zhao, Y. C.; Saidaminov, M. I.; Todorović, P.; Broberg, D.; Walters, G.; Tan, F. R.; Zhuang, T. T. et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat. Commun. 2018, 9, 3100.

    Article  Google Scholar 

  16. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.

    Article  Google Scholar 

  17. Atourki, L.; Vega, E.; Marí, B.; Mollar, M.; Ait Ahsaine, H.; Bouabid, K.; Ihlal, A. Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3−xBrx (0 ≤ x ≤ 1) films. Appl. Surf. Sci. 2016, 371, 112–117.

    Article  Google Scholar 

  18. Yang, M. J.; Kim, D. H.; Yu, Y.; Li, Z.; Reid, O. G.; Song, Z. N.; Zhao, D. W.; Wang, C. L.; Li, L. W.; Meng, Y. et al. Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells. Mater. Today Energy 2018, 7, 232–238.

    Article  Google Scholar 

  19. Yang, Z. B.; Rajagopal, A.; Jo, S. B.; Chueh, C. C.; Williams, S.; Huang, C. C.; Katahara, J. K.; Hillhouse, H. W.; Jen, A. K. Y. Stabilized wide bandgap perovskite solar cells by tin substitution. Nano Lett. 2016, 16, 7739–7747.

    Article  Google Scholar 

  20. Ansari, F.; Salavati-Niasari, M.; Nazari, P.; Mir, N.; Ahmadi, V.; Abdollahi Nejand, B. Long-term durability of bromide-incorporated perovskite solar cells via a modified vapor-assisted solution process. ACS Appl. Energy Mater. 2018, 1, 6018–6026.

    Article  Google Scholar 

  21. Tu, Y. G.; Wu, J. H.; Lan, Z.; He, X.; Dong, J.; Jia, J. B.; Guo, P. F.; Lin, J. M.; Huang, M. L.; Huang, Y. F. Modulated CH3NH3PbI3−xBrx film for efficient perovskite solar cells exceeding 18%. Sci. Rep. 2017, 7, 44603.

    Article  Google Scholar 

  22. Barker, A. J.; Sadhanala, A.; Deschler, F.; Gandini, M.; Senanayak, S. P.; Pearce, P. M.; Mosconi, E.; Pearson, A. J.; Wu, Y.; Srimath Kandada, A. R. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2017, 2, 1416–1424.

    Article  Google Scholar 

  23. Yoon, S. J.; Draguta, S.; Manser, J. S.; Sharia, O.; Schneider, W. F.; Kuno, M.; Kamat, P. V. Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Lett. 2016, 1, 290–296.

    Article  Google Scholar 

  24. Slotcavage, D. J.; Karunadasa, H. I.; McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 2016, 1, 1199–1205.

    Article  Google Scholar 

  25. Zhao, Y. X.; Zhu, K. Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. J. Am. Chem. Soc. 2014, 136, 12241–12244.

    Article  Google Scholar 

  26. Longo, G.; Wong, A.; Sessolo, M.; Bolink, H. J. Effect of the precursor’s stoichiometry on the optoelectronic properties of methylammonium lead bromide perovskites. J. Lumin. 2017, 189, 120–125.

    Article  Google Scholar 

  27. Zhou, Y. Y.; Yang, M. J.; Game, O. S.; Wu, W. W.; Kwun, J.; Strauss, M. A.; Yan, Y. F.; Huang, J. S.; Zhu, K.; Padture, N. P. Manipulating crystallization of organolead mixed-halide thin films in antisolvent baths for wide-bandgap perovskite solar cells. ACS Appl. Mater. Interfaces 2016, 8, 2232–2237.

    Article  Google Scholar 

  28. Braly, I. L.; Stoddard, R. J.; Rajagopal, A.; Uhl, A. R.; Katahara, J. K.; Jen, A. K. Y.; Hillhouse, H. W. Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design. ACS Energy Lett. 2017, 2, 1841–1847.

    Article  Google Scholar 

  29. Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 2015, 6, 613–617.

    Article  Google Scholar 

  30. Yoon, S. J.; Stamplecoskie, K. G.; Kamat, P. V. How lead halide complex chemistry dictates the composition of mixed halide perovskites. J. Phys. Chem. Lett. 2016, 7, 1368–1373.

    Article  Google Scholar 

  31. Rajagopal, A.; Yang, Z. B.; Jo, S. B.; Braly, I. L.; Liang, P. W.; Hillhouse, H. W.; Jen, A. K. Y. Highly efficient perovskite-perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 2017, 29, 1702140.

    Article  Google Scholar 

  32. Eperon, G. E.; Leijtens, T.; Bush, K. A.; Prasanna, R.; Green, T.; Wang, J. T.-W.; McMeekin, D. P.; Volonakis, G.; Milot, R. L.; May, R. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 2016, 354, 861–865.

    Article  Google Scholar 

  33. Forgács, D.; Gil-Escrig, L.; Pérez-Del-Rey, D.; Momblona, C.; Werner, J.; Niesen, B.; Ballif, C.; Sessolo, M.; Bolink, H. J. Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 2017, 7, 1602121.

    Article  Google Scholar 

  34. Leijtens, T.; Bush, K. A.; Prasanna, R.; McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 2018, 3, 828–838.

    Article  Google Scholar 

  35. Xie, Y.-M.; Yu, B. B.; Ma, C. Q.; Xu, X. W.; Cheng, Y. H.; Yuan, S.; Wang, Z.-K.; Chandran, H. T.; Lee, C.-S.; Liao, L.-S. et al. Direct observation of cation-exchange in liquid-to-solid phase transformation in FA1–xMAxPbI3 based perovskite solar cells. J. Mater. Chem. A 2018, 6, 9081–9088.

    Article  Google Scholar 

  36. Cheng, Y. H.; Yang, Q.-D.; Xiao, J. Y.; Xue, Q. F.; Li, H.-W.; Guan, Z. Q.; Yip, H.-L.; Tsang, S.-W. Decomposition of organometal halide perovskite films on zinc oxide nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 19986–19993.

    Article  Google Scholar 

  37. Xu, X. W.; Ma, C. Q.; Cheng, Y. H.; Xie, Y.-M.; Yi, X. P.; Gautam, B.; Chen, S. M.; Li, H.-W.; Lee, C.-S.; So, F. et al. Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%. J. Power Sources 2017, 360, 157–165.

    Article  Google Scholar 

  38. Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 2014, 24, 3250–3258.

    Article  Google Scholar 

  39. Yang, M. L.; Zhang, T. Y.; Schulz, P.; Li, Z.; Li, G.; Kim, D. H.; Guo, N. J.; Berry, J. J.; Zhu, K.; Zhao, Y. X. Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Brselective Ostwald ripening. Nat. Commun. 2016, 7, 12305.

    Article  Google Scholar 

  40. Kulkarni, S. A.; Baikie, T.; Boix, P. P.; Yantara, N.; Mathews, N.; Mhaisalkar, S. Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2014, 2, 9221–9225.

    Article  Google Scholar 

  41. Zhang, M.; Yu, H.; Lyu, M.; Wang, Q.; Yun, J.-H.; Wang, L. Z. Compositiondependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3−xClx films. Chem. Commun. 2014, 50, 11727–11730.

    Article  Google Scholar 

  42. Song, Z. N.; Watthage, S. C.; Phillips, A. B.; Tompkins, B. L.; Ellingson, R. J.; Heben, M. J. Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites. Chem. Mater. 2015, 27, 4612–4619.

    Article  Google Scholar 

  43. Sutter-Fella, C. M.; Li, Y. B.; Amani, M.; Ager, J. W., 3rd; Toma, F. M.; Yablonovitch, E.; Sharp, I. D.; Javey, A. High photoluminescence quantum yield in band gap tunable bromide containing mixed halide perovskites. Nano Lett. 2016, 16, 800–806.

    Article  Google Scholar 

  44. Yang, M. L.; Zhang, T. Y.; Schulz, P.; Li, Z.; Li, G.; Kim, D. H.; Guo, N. J.; Berry, J. J.; Zhu, K.; Zhao, Y. X. Facile fabrication of large-grain CH3NH3PbI3–xBrx films for high-efficiency solar cells via CH3NH3Brselective Ostwald ripening. Nat. Commun. 2016, 7, 12305.

    Article  Google Scholar 

  45. Liang, Z. R.; Zhang, S. H.; Xu, X. Q.; Wang, N.; Wang, J. X.; Wang, X.; Bi, Z. N.; Xu, G.; Yuan, N. Y.; Ding, J. N. A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions. RSC Adv. 2015, 5, 60562–60569.

    Article  Google Scholar 

  46. Bi, D. Q.; Luo, J. S.; Zhang, F.; Magrez, A.; Athanasopoulou, E. N.; Hagfeldt, A.; Grätzel, M. Morphology engineering: A route to highly reproducible and high efficiency perovskite solar cells. ChemSusChem 2017, 10, 1624–1630.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank the funding support from the National Natural Science Foundation of China (No. 61574120), the Guangdong province Natural Science Foundation of China (No. 2015A030313001) and the Hong Kong Innovation and Technology Commission (No. ITS/186/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai-Wing Tsang.

Electronic supplementary material

12274_2019_2336_MOESM1_ESM.pdf

Revealing the crystallization process and realizing uniform 1.8 eV MA-based wide-bandgap mixed-halide perovskites via solution engineering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, YM., Ma, C., Xu, X. et al. Revealing the crystallization process and realizing uniform 1.8 eV MA-based wide-bandgap mixed-halide perovskites via solution engineering. Nano Res. 12, 1033–1039 (2019). https://doi.org/10.1007/s12274-019-2336-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2336-5

Keywords

Navigation