Skip to main content

Advertisement

SpringerLink
Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction
Download PDF
Download PDF
  • Research Article
  • Open Access
  • Published: 12 March 2019

Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction

  • Daniel Ugarte1,2,
  • Luiz H. G. Tizei3,
  • Monica A. Cotta1,
  • Caterina Ducati2,
  • Paul A. Midgley2 &
  • …
  • Alexander S. Eggeman2,4 

Nano Research volume 12, pages 939–946 (2019)Cite this article

  • 688 Accesses

  • 2 Citations

  • 4 Altmetric

  • Metrics details

Abstract

Transmission electron microscopes (TEM) are widely used in nanotechnology research. However, it is still challenging to characterize nanoscale objects; their small size coupled with dynamical diffraction makes interpreting real- or reciprocal-space data difficult. Scanning precession electron diffraction ((S)PED) represents an invaluable contribution, reducing the dynamical contributions to the diffraction pattern at high spatial resolution. Here a detailed analysis of wurtzite InP nanowires (30–40 nm in diameter) containing a screw dislocation and an associated wire lattice torsion is presented. It has been possible to characterize the dislocation with great detail (Burgers and line vector, handedness). Through careful measurement of the strain field and comparison with dynamical electron diffraction simulations, this was found to be compatible with a Burgers vector modulus equal to one hexagonal lattice cell parameter despite the observed crystal rotation rate being larger (ca. 20%) than that predicted by classical elastic theory for the nominal wire diameter. These findings corroborate the importance of the (S)PED technique for characterizing nanoscale materials.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486–491.

    Article  Google Scholar 

  2. Yang, P. D. The chemistry and physics of semiconductor nanowires. MRS Bull. 2005, 30, 85–91.

    Article  Google Scholar 

  3. Agarwal, R. Heterointerfaces in semiconductor nanowires. Small 2008, 4, 1872–1893.

    Article  Google Scholar 

  4. Erni, R. Aberration-Corrected Imaging in Transmission Electron Microscopy: An Introduction; London UK: Imperial College Press, 2015.

    Book  Google Scholar 

  5. Williams, D. B.; Carter, C. B. Transmission Electron Microscopy-A Textbook for Materials Science; Boston, MA: Springer, 2009.

    Book  Google Scholar 

  6. Pennycook, S. J.; Nellist, P. D. Scanning Transmission Electron Microscopy; New York: Springer, 2011.

    Book  Google Scholar 

  7. Carter, B.; Williams, D. B. Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry; Switzerland: Springer, 2016.

    Book  Google Scholar 

  8. Hammond, C. The Basics of Crystallography and Diffraction; 3rd ed. Oxford: Oxford University Press, 2009.

    Google Scholar 

  9. Vincent, R.; Midgley, P. A. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 1994, 53, 271–282.

    Article  Google Scholar 

  10. Eggeman, A. S.; Midgley, P. A. Precession electron diffraction. In Advanced in Imaging and Electron Physics. Hawkes, P. W., Eds.; Amsterdam: Elsevier/Academic, 2012; pp 1–63.

    Google Scholar 

  11. Midgley, P. A.; Eggeman, A. S. Precession electron diffraction—A topical review. IUCrJ 2015, 2, 126–136.

    Article  Google Scholar 

  12. Rauch, E. F.; Véron, M.; Portillo, J.; Bultreys, D.; Maniette, Y.; Nicolopoulos S. Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc. Anal. 2008, 22, S5–S8.

    Google Scholar 

  13. Béché, A.; Rouvière, J. L.; Barnes, J. P.; Cooper, D. Strain measurement at the nanoscale: Comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography. Ultramicroscopy 2013, 13, 10–23.

    Article  Google Scholar 

  14. Cooper, D.; Bernier, N.; Rouvière, J. L. Combining 2 nm spatial resolution and 0.02% precision for deformation mapping of semiconductor specimens in a transmission electron microscope by precession electron diffraction. Nano Lett. 2015, 15, 5289–5294.

    Article  Google Scholar 

  15. Cooper, D.; Denneulin, T.; Bernier, N.; Béché, A.; Rouvière, J. L. Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope. Micron 2016, 80, 145–165.

    Article  Google Scholar 

  16. Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146.

    Article  Google Scholar 

  17. Hÿtch, M. J.; Houdellier, F. Mapping stress and strain in nanostructures by high-resolution transmission electron microscopy. Microelectron. Eng. 2007, 84, 460–463.

    Article  Google Scholar 

  18. De Graef, M. Introduction to Conventional Transmission Electron Microscopy; Cambridge: Cambridge University Press, 2003.

    Book  Google Scholar 

  19. Zuo, J. M.; Spence, J. C. H. Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience; New York: Springer, 2017.

    Book  Google Scholar 

  20. Dacal, L. C. O.; Cantarero, A. Ab initio electronic band structure calculation of InP in the wurtzite phase. Solid State Commun. 2011, 151, 781–784.

    Article  Google Scholar 

  21. Eshelby, J. D. Screw dislocations in thin rods. J. Appl. Phys. 1953, 24, 176–179.

    Article  Google Scholar 

  22. Eshelby, J. D. The twist in a crystal whisker containing a dislocation. Philos. Mag. 1958, 3, 440–447.

    Article  Google Scholar 

  23. Zhu, J.; Peng, H. L.; Marshall, A. F.; Barnett, D. M.; Nix W. D.; Cui, Y. Formation of chiral branched nanowires by the Eshelby Twist. Nat. Nanotechnol. 2008, 3, 477–481.

    Article  Google Scholar 

  24. Bierman, M. J.; Lau, Y. K. A.; Kvit, A. V.; Schmitt, A. L.; Jin, S. Dislocation-driven nanowire growth and Eshelby Twist. Science 2008, 320, 1060–1063.

    Article  Google Scholar 

  25. Tizei, L. H. G.; Craven, A. J.; Zagonel, L. F.; Tencé, M.; Stéphan, O.; Chiaramonte, T.; Cotta, M. A.; Ugarte D. Enhanced Eshelby twist on thin wurtzite InP nanowires and measurement of local crystal rotation. Phys. Rev. Lett. 2011, 107, 195503.

    Article  Google Scholar 

  26. Hiruma, K.; Yazawa, M.; Katsuyama, T.; Ogawa, K.; Haraguchi, K.; Koguchi, M.; Kakibayashi H. Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 1995, 77, 447–462.

    Google Scholar 

  27. Morin, S. A.; Bierman, M. J.; Tong, J.; Jin, S. Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 2010, 328, 476–480.

    Article  Google Scholar 

  28. Wu, H. Y.; Meng, F.; Li, L. S.; Jin, S.; Zheng, G. F. Dislocation-driven CdS and CdSe nanowire growth. ACS Nano 2012, 6, 4461–4468.

    Article  Google Scholar 

  29. Meng, F.; Morin, S. A.; Forticaux, A.; Jin, S. Screw dislocation driven growth of nanomaterials. Acc. Chem. Res. 2013, 46, 1616–1626.

    Article  Google Scholar 

  30. Chauvin, N.; Mavel, A.; Patriarche, G.; Masenelli, B.; Gendry, M.; Machon, D. Pressure-dependent photoluminescence study of wurtzite InP nanowires. Nano Lett. 2016, 16, 2926–2930.

    Article  Google Scholar 

  31. De Luca, M.; Polimeni, A. Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy. Appl. Phys. Rev. 2017, 4, 041102.

    Article  Google Scholar 

  32. Palatinus, L.; Corrêa, C. A.; Steciuk, G.; Jacob, D.; Roussel, P.; Boullay, P.; Klementová, M.; Gemmi, M.; Kopeček, J.; Domeneghetti, M. C. et al. Structure refinement using precession electron diffraction tomography and dynamical diffraction: Tests on experimental data. Acta Cryst. B 2015, 71, 740–751.

    Article  Google Scholar 

  33. Palatinus, L.; Petříček, V.; Corrêa, C. A. Structure refinement using precession electron diffraction tomography and dynamical diffraction: Theory and implementation. Acta Cryst. A 2015, 71, 235–244.

    Article  Google Scholar 

  34. Wagner, R. S.; Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

    Article  Google Scholar 

  35. Hayashi, T.; Ohno, T.; Yatsuya, S.; Uyeda, R. Formation of ultrafine metal particles by gas-evaporation technique. IV. Crystal habits of iron and FCC metals, Al, Co, Ni, Cu, Pd, Ag, In, Au and Pb. Jpn. J. Appl. Phys. 1977, 16, 705–717.

    Google Scholar 

  36. Frank, F. C. Capillary equilibria of dislocated crystals. Acta Cryst. 1951, 4, 497–501.

    Article  Google Scholar 

  37. Anscombe, F. J. The transformation of Poisson, binomial and negative-binomial data. Biometrika 1948, 35, 246–254.

    Article  Google Scholar 

  38. Mäkitalo, M.; Foi, A. A closed-form approximation of the exact unbiased inverse of the anscombe variance-stabilizing transformation. IEEE Trans. Image Process. 2011, 20, 2697–2698.

    Article  Google Scholar 

  39. Mäkitalo, M.; Foi, A. Optimal inversion of the anscombe transformation in low-count Poisson image denoising. IEEE Trans. Image Process. 2011, 20, 99–109.

    Article  Google Scholar 

  40. Azzari, L.; Foi, A. Variance stabilization for noisy+estimate combination in iterative Poisson denoising. IEEE Signal Process. Lett. 2016, 23, 1086–1090.

    Article  Google Scholar 

  41. Yang, Y.; Chen, C. C.; Scott, M. C.; Ophus, C.; Xu, R.; Pryor, A.; Wu, L.; Sun, F.; Theis, W.; Zhou, J. H. et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 2017, 542, 75–79.

    Article  Google Scholar 

  42. Kocks, U. F.; Tomé, C. N.; Wenk, H. R. Texture and Anisotropy; Cambridge: Cambridge University Press, 1998.

    Google Scholar 

  43. Morawiec, A.; Bouzy, E.; Paul, H.; Fundenberger, J. J. Orientation precision of TEM-based orientation mapping techniques. Ultramicroscopy 2014, 136, 107–118.

    Article  Google Scholar 

  44. Rauch, E. F.; Véron, M. Virtual dark-field images reconstructed from electron diffraction patterns. Eur. Phys. J. Appl. Phys. 2014, 66, 10701.

    Article  Google Scholar 

  45. Liao, Y. F.; Marks, L. D. On the alignment for precession electron diffraction. Ultramicroscopy 2012, 117, 1–6.

    Article  Google Scholar 

  46. Barnard, J. S.; Johnstone, D. N.; Midgley, P. A. High-resolution scanning precession electron diffraction: Alignment and spatial resolution. Ultramicroscopy 2017, 174, 79–88.

    Article  Google Scholar 

  47. Eggeman, A. S.; London, A.; Midgley, P. A. Ultrafast electron diffraction pattern simulations using GPU technology. Applications to lattice vibrations. Ultramicroscopy 2013, 134, 44–47.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Z. Saghi for taking the ADF-STEM images of the twisted wires. D. U. acknowledges financial support from the Brazilian Agencies FAPESP (No. 2014/01045-0) and CNPq (No. 302767/2012-6). A. E. acknowledges funding from the Royal Society. P. A. M. acknowledges financial support from European Research Council through grant 291522-3DIMAGE and the EPSRC grant number EP/R025517/1. M. A. C. acknowledges financial support from FAPESP (Nos. 2013/02300-1 and 2013/10957-0) and CNPq (No. 479486/ 2012-3). L. H. G. T. and P. A. M. acknowledge funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 312483 (ESTEEM2).

Author information

Authors and Affiliations

  1. Instituto de Física “Gleb Wataghin”, Universidade Estadual de Campinas-UNICAMP, CEP 13083-859, Campinas, SP, Brazil

    Daniel Ugarte & Monica A. Cotta

  2. Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK

    Daniel Ugarte, Caterina Ducati, Paul A. Midgley & Alexander S. Eggeman

  3. Laboratoire de Physique des Solides, CNRS UMR8502, Univ. Paris Sud, 91405, Orsay, France

    Luiz H. G. Tizei

  4. School of Materials, University of Manchester, Manchester, M13 9PL, UK

    Alexander S. Eggeman

Authors
  1. Daniel Ugarte
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Luiz H. G. Tizei
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Monica A. Cotta
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Caterina Ducati
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Paul A. Midgley
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Alexander S. Eggeman
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Daniel Ugarte or Alexander S. Eggeman.

Electronic supplementary material

Supplementary material, approximately 840 KB.

Supplementary material, approximately 1.19 MB.

Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://doi.org/creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ugarte, D., Tizei, L.H.G., Cotta, M.A. et al. Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction. Nano Res. 12, 939–946 (2019). https://doi.org/10.1007/s12274-019-2328-5

Download citation

  • Received: 11 October 2018

  • Revised: 17 January 2019

  • Accepted: 04 February 2019

  • Published: 12 March 2019

  • Issue Date: April 2019

  • DOI: https://doi.org/10.1007/s12274-019-2328-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • electron microscopy
  • scanning precession electron diffraction
  • Eshelby twist
  • screw dislocation
  • nanowire
  • indium phosphide
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.