Nano Research

, Volume 12, Issue 4, pp 939–946 | Cite as

Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction

  • Daniel UgarteEmail author
  • Luiz H. G. Tizei
  • Monica A. Cotta
  • Caterina Ducati
  • Paul A. Midgley
  • Alexander S. EggemanEmail author
Open Access
Research Article


Transmission electron microscopes (TEM) are widely used in nanotechnology research. However, it is still challenging to characterize nanoscale objects; their small size coupled with dynamical diffraction makes interpreting real- or reciprocal-space data difficult. Scanning precession electron diffraction ((S)PED) represents an invaluable contribution, reducing the dynamical contributions to the diffraction pattern at high spatial resolution. Here a detailed analysis of wurtzite InP nanowires (30–40 nm in diameter) containing a screw dislocation and an associated wire lattice torsion is presented. It has been possible to characterize the dislocation with great detail (Burgers and line vector, handedness). Through careful measurement of the strain field and comparison with dynamical electron diffraction simulations, this was found to be compatible with a Burgers vector modulus equal to one hexagonal lattice cell parameter despite the observed crystal rotation rate being larger (ca. 20%) than that predicted by classical elastic theory for the nominal wire diameter. These findings corroborate the importance of the (S)PED technique for characterizing nanoscale materials.


electron microscopy scanning precession electron diffraction Eshelby twist screw dislocation nanowire indium phosphide 



We thank Dr Z. Saghi for taking the ADF-STEM images of the twisted wires. D. U. acknowledges financial support from the Brazilian Agencies FAPESP (No. 2014/01045-0) and CNPq (No. 302767/2012-6). A. E. acknowledges funding from the Royal Society. P. A. M. acknowledges financial support from European Research Council through grant 291522-3DIMAGE and the EPSRC grant number EP/R025517/1. M. A. C. acknowledges financial support from FAPESP (Nos. 2013/02300-1 and 2013/10957-0) and CNPq (No. 479486/ 2012-3). L. H. G. T. and P. A. M. acknowledge funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 312483 (ESTEEM2).

Supplementary material

12274_2019_2328_MOESM1_ESM.avi (841 kb)
Supplementary material, approximately 840 KB.
12274_2019_2328_MOESM2_ESM.avi (1.2 mb)
Supplementary material, approximately 1.19 MB.
12274_2019_2328_MOESM3_ESM.pdf (2.5 mb)
Analysis of structural distortion in Eshelby twisted InP nanowires by scanning precession electron diffraction


  1. [1]
    Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486–491.CrossRefGoogle Scholar
  2. [2]
    Yang, P. D. The chemistry and physics of semiconductor nanowires. MRS Bull. 2005, 30, 85–91.CrossRefGoogle Scholar
  3. [3]
    Agarwal, R. Heterointerfaces in semiconductor nanowires. Small 2008, 4, 1872–1893.CrossRefGoogle Scholar
  4. [4]
    Erni, R. Aberration-Corrected Imaging in Transmission Electron Microscopy: An Introduction; London UK: Imperial College Press, 2015.CrossRefGoogle Scholar
  5. [5]
    Williams, D. B.; Carter, C. B. Transmission Electron Microscopy-A Textbook for Materials Science; Boston, MA: Springer, 2009.CrossRefGoogle Scholar
  6. [6]
    Pennycook, S. J.; Nellist, P. D. Scanning Transmission Electron Microscopy; New York: Springer, 2011.CrossRefGoogle Scholar
  7. [7]
    Carter, B.; Williams, D. B. Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry; Switzerland: Springer, 2016.CrossRefGoogle Scholar
  8. [8]
    Hammond, C. The Basics of Crystallography and Diffraction; 3rd ed. Oxford: Oxford University Press, 2009.Google Scholar
  9. [9]
    Vincent, R.; Midgley, P. A. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 1994, 53, 271–282.CrossRefGoogle Scholar
  10. [10]
    Eggeman, A. S.; Midgley, P. A. Precession electron diffraction. In Advanced in Imaging and Electron Physics. Hawkes, P. W., Eds.; Amsterdam: Elsevier/Academic, 2012; pp 1–63.Google Scholar
  11. [11]
    Midgley, P. A.; Eggeman, A. S. Precession electron diffraction—A topical review. IUCrJ 2015, 2, 126–136.CrossRefGoogle Scholar
  12. [12]
    Rauch, E. F.; Véron, M.; Portillo, J.; Bultreys, D.; Maniette, Y.; Nicolopoulos S. Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc. Anal. 2008, 22, S5–S8.Google Scholar
  13. [13]
    Béché, A.; Rouvière, J. L.; Barnes, J. P.; Cooper, D. Strain measurement at the nanoscale: Comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography. Ultramicroscopy 2013, 13, 10–23.CrossRefGoogle Scholar
  14. [14]
    Cooper, D.; Bernier, N.; Rouvière, J. L. Combining 2 nm spatial resolution and 0.02% precision for deformation mapping of semiconductor specimens in a transmission electron microscope by precession electron diffraction. Nano Lett. 2015, 15, 5289–5294.CrossRefGoogle Scholar
  15. [15]
    Cooper, D.; Denneulin, T.; Bernier, N.; Béché, A.; Rouvière, J. L. Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope. Micron 2016, 80, 145–165.CrossRefGoogle Scholar
  16. [16]
    Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146.CrossRefGoogle Scholar
  17. [17]
    Hÿtch, M. J.; Houdellier, F. Mapping stress and strain in nanostructures by high-resolution transmission electron microscopy. Microelectron. Eng. 2007, 84, 460–463.CrossRefGoogle Scholar
  18. [18]
    De Graef, M. Introduction to Conventional Transmission Electron Microscopy; Cambridge: Cambridge University Press, 2003.CrossRefGoogle Scholar
  19. [19]
    Zuo, J. M.; Spence, J. C. H. Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience; New York: Springer, 2017.CrossRefGoogle Scholar
  20. [20]
    Dacal, L. C. O.; Cantarero, A. Ab initio electronic band structure calculation of InP in the wurtzite phase. Solid State Commun. 2011, 151, 781–784.CrossRefGoogle Scholar
  21. [21]
    Eshelby, J. D. Screw dislocations in thin rods. J. Appl. Phys. 1953, 24, 176–179.CrossRefGoogle Scholar
  22. [22]
    Eshelby, J. D. The twist in a crystal whisker containing a dislocation. Philos. Mag. 1958, 3, 440–447.CrossRefGoogle Scholar
  23. [23]
    Zhu, J.; Peng, H. L.; Marshall, A. F.; Barnett, D. M.; Nix W. D.; Cui, Y. Formation of chiral branched nanowires by the Eshelby Twist. Nat. Nanotechnol. 2008, 3, 477–481.CrossRefGoogle Scholar
  24. [24]
    Bierman, M. J.; Lau, Y. K. A.; Kvit, A. V.; Schmitt, A. L.; Jin, S. Dislocation-driven nanowire growth and Eshelby Twist. Science 2008, 320, 1060–1063.CrossRefGoogle Scholar
  25. [25]
    Tizei, L. H. G.; Craven, A. J.; Zagonel, L. F.; Tencé, M.; Stéphan, O.; Chiaramonte, T.; Cotta, M. A.; Ugarte D. Enhanced Eshelby twist on thin wurtzite InP nanowires and measurement of local crystal rotation. Phys. Rev. Lett. 2011, 107, 195503.CrossRefGoogle Scholar
  26. [26]
    Hiruma, K.; Yazawa, M.; Katsuyama, T.; Ogawa, K.; Haraguchi, K.; Koguchi, M.; Kakibayashi H. Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 1995, 77, 447–462.Google Scholar
  27. [27]
    Morin, S. A.; Bierman, M. J.; Tong, J.; Jin, S. Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations. Science 2010, 328, 476–480.CrossRefGoogle Scholar
  28. [28]
    Wu, H. Y.; Meng, F.; Li, L. S.; Jin, S.; Zheng, G. F. Dislocation-driven CdS and CdSe nanowire growth. ACS Nano 2012, 6, 4461–4468.CrossRefGoogle Scholar
  29. [29]
    Meng, F.; Morin, S. A.; Forticaux, A.; Jin, S. Screw dislocation driven growth of nanomaterials. Acc. Chem. Res. 2013, 46, 1616–1626.CrossRefGoogle Scholar
  30. [30]
    Chauvin, N.; Mavel, A.; Patriarche, G.; Masenelli, B.; Gendry, M.; Machon, D. Pressure-dependent photoluminescence study of wurtzite InP nanowires. Nano Lett. 2016, 16, 2926–2930.CrossRefGoogle Scholar
  31. [31]
    De Luca, M.; Polimeni, A. Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy. Appl. Phys. Rev. 2017, 4, 041102.CrossRefGoogle Scholar
  32. [32]
    Palatinus, L.; Corrêa, C. A.; Steciuk, G.; Jacob, D.; Roussel, P.; Boullay, P.; Klementová, M.; Gemmi, M.; Kopeček, J.; Domeneghetti, M. C. et al. Structure refinement using precession electron diffraction tomography and dynamical diffraction: Tests on experimental data. Acta Cryst. B 2015, 71, 740–751.CrossRefGoogle Scholar
  33. [33]
    Palatinus, L.; Petříček, V.; Corrêa, C. A. Structure refinement using precession electron diffraction tomography and dynamical diffraction: Theory and implementation. Acta Cryst. A 2015, 71, 235–244.CrossRefGoogle Scholar
  34. [34]
    Wagner, R. S.; Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.CrossRefGoogle Scholar
  35. [35]
    Hayashi, T.; Ohno, T.; Yatsuya, S.; Uyeda, R. Formation of ultrafine metal particles by gas-evaporation technique. IV. Crystal habits of iron and FCC metals, Al, Co, Ni, Cu, Pd, Ag, In, Au and Pb. Jpn. J. Appl. Phys. 1977, 16, 705–717.Google Scholar
  36. [36]
    Frank, F. C. Capillary equilibria of dislocated crystals. Acta Cryst. 1951, 4, 497–501.CrossRefGoogle Scholar
  37. [37]
    Anscombe, F. J. The transformation of Poisson, binomial and negative-binomial data. Biometrika 1948, 35, 246–254.CrossRefGoogle Scholar
  38. [38]
    Mäkitalo, M.; Foi, A. A closed-form approximation of the exact unbiased inverse of the anscombe variance-stabilizing transformation. IEEE Trans. Image Process. 2011, 20, 2697–2698.CrossRefGoogle Scholar
  39. [39]
    Mäkitalo, M.; Foi, A. Optimal inversion of the anscombe transformation in low-count Poisson image denoising. IEEE Trans. Image Process. 2011, 20, 99–109.CrossRefGoogle Scholar
  40. [40]
    Azzari, L.; Foi, A. Variance stabilization for noisy+estimate combination in iterative Poisson denoising. IEEE Signal Process. Lett. 2016, 23, 1086–1090.CrossRefGoogle Scholar
  41. [41]
    Yang, Y.; Chen, C. C.; Scott, M. C.; Ophus, C.; Xu, R.; Pryor, A.; Wu, L.; Sun, F.; Theis, W.; Zhou, J. H. et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 2017, 542, 75–79.CrossRefGoogle Scholar
  42. [42]
    Kocks, U. F.; Tomé, C. N.; Wenk, H. R. Texture and Anisotropy; Cambridge: Cambridge University Press, 1998.Google Scholar
  43. [43]
    Morawiec, A.; Bouzy, E.; Paul, H.; Fundenberger, J. J. Orientation precision of TEM-based orientation mapping techniques. Ultramicroscopy 2014, 136, 107–118.CrossRefGoogle Scholar
  44. [44]
    Rauch, E. F.; Véron, M. Virtual dark-field images reconstructed from electron diffraction patterns. Eur. Phys. J. Appl. Phys. 2014, 66, 10701.CrossRefGoogle Scholar
  45. [45]
    Liao, Y. F.; Marks, L. D. On the alignment for precession electron diffraction. Ultramicroscopy 2012, 117, 1–6.CrossRefGoogle Scholar
  46. [46]
    Barnard, J. S.; Johnstone, D. N.; Midgley, P. A. High-resolution scanning precession electron diffraction: Alignment and spatial resolution. Ultramicroscopy 2017, 174, 79–88.CrossRefGoogle Scholar
  47. [47]
    Eggeman, A. S.; London, A.; Midgley, P. A. Ultrafast electron diffraction pattern simulations using GPU technology. Applications to lattice vibrations. Ultramicroscopy 2013, 134, 44–47.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Authors and Affiliations

  • Daniel Ugarte
    • 1
    • 2
    Email author
  • Luiz H. G. Tizei
    • 3
  • Monica A. Cotta
    • 1
  • Caterina Ducati
    • 2
  • Paul A. Midgley
    • 2
  • Alexander S. Eggeman
    • 2
    • 4
    Email author
  1. 1.Instituto de Física “Gleb Wataghin”Universidade Estadual de Campinas-UNICAMPCampinasBrazil
  2. 2.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  3. 3.Laboratoire de Physique des Solides, CNRS UMR8502Univ. Paris SudOrsayFrance
  4. 4.School of MaterialsUniversity of ManchesterManchesterUK

Personalised recommendations