Skip to main content
Log in

Fabrication of bilayer Pd-Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The hydrogen evolution reaction (HER), which generates molecular hydrogen through the electrochemical reduction of water, is an important clean-energy technology. Platinum (Pt) is an ideal material for HER electrocatalysts in terms of low overpotential and fast kinetics. An effective method to improve the atom utilization efficiency of Pt is to fabricate Pt-based core-shell or nanocage structures with ultra-thin walls. This paper describes the construction of bilayer palladium (Pd)-Pt alloy nanocages catalyst with enhanced HER catalytic activity. The nanocages were fabricated by etching away the Pd templates of multishelled nanocubes composed of alternate shells of Pd and Pt with well-defined (100) facets. The bilayer Pd-Pt nanocages with sub-nanometer shells have a high dispersion of the active atoms on the outside and inside surfaces of outer layer and inner layer, respectively. Moreover, the Pd-Pt alloy lowers the overpotential for HER and speeds up the reaction rate of HER due to the synergies between Pd and Pt. The rational design of bilayer nanocages provided a novel route for boosting the atom utilization efficiency of Pt catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Litster, S.; McLean, G. PEM fuel cell electrodes. J. Power Sources 2004, 130, 61–76.

    Article  Google Scholar 

  2. Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

    Article  Google Scholar 

  3. Zhu, H.; Luo, M. C.; Zhang, S.; Wei, L. L.; Wang, F. H.; Wang, Z. M.; Wei, Y. S.; Han, K. F. Combined method to prepare core-shell structured catalyst for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2013, 38, 3323–3329.

    Article  Google Scholar 

  4. Markovic, N. M.; Grgur, B. N.; Ross, P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 1997, 101, 5405–5413.

    Article  Google Scholar 

  5. Markovica, N. M.; Sarraf, S. T.; Gasteiger, H. A.; Ross, P. N., Jr. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J. Chem. Soc., Faraday Trans. 1996, 92, 3719–3725.

    Article  Google Scholar 

  6. Zhang, H.; Jin, M. S.; Xia, Y. N. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 2012, 41, 8035–8049.

    Article  Google Scholar 

  7. Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

    Article  Google Scholar 

  8. Guo, S. J.; Wang, E. K. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today 2011, 6, 240–264.

    Article  Google Scholar 

  9. Wang, X.; Figueroa-Cosme, L.; Yang, X.; Luo, M.; Liu, J. Y.; Xie, Z. X.; Xia, Y. N. Pt-based icosahedral nanocages: Using a combination of {111} facets, twin defects, and ultrathin walls to greatly enhance their activity toward oxygen reduction. Nano Lett. 2016, 16, 1467–1471.

    Article  Google Scholar 

  10. Yu, S. N.; Zhang, L.; Dong, H.; Gong, J. L. Facile synthesis of Pd@Pt octahedra supported on carbon for electrocatalytic applications. AIChE J. 2017, 63, 2528–2534.

    Article  Google Scholar 

  11. Yu, S. N.; Zhang, L.; Zhao, Z. J.; Gong, J. L. Structural evolution of concave trimetallic nanocubes with tunable ultra-thin shells for oxygen reduction reaction. Nanoscale 2016, 8, 16640–16649.

    Article  Google Scholar 

  12. Fan, H.; Yang, L. J.; Wang, Y.; Zhang, X. L.; Wu, Q. S.; Che, R. C.; Liu, M.; Wu, Q.; Wang, X. Z.; Hu, Z. Boosting oxygen reduction activity of spinel CoFe2O4 by strong interaction with hierarchical nitrogen-doped carbon nanocages. Sci. Bull. 2017, 62, 1365–1372.

    Article  Google Scholar 

  13. Hu, C. L.; Zhang, L.; Zhao, Z. J.; Li, A.; Chang, X. X.; Gong, J. L. Synergism of geometric construction and electronic regulation: 3D Se-(NiCo)Sx/(OH)x nanosheets for highly efficient overall water splitting. Adv. Mater. 2018, 30, 1705538.

    Article  Google Scholar 

  14. Zhu, W. J.; Zhang, L.; Yang, P. P.; Chang, X. X.; Dong, H.; Li, A.; Hu, C. L.; Huang, Z. Q.; Zhao, Z. J.; Gong, J. L. Morphological and compositional design of Pd–Cu bimetallic nanocatalysts with controllable product selectivity toward CO2 electroreduction. Small 2018, 14, 1703314.

    Article  Google Scholar 

  15. Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 2004, 108, 10955–10964.

    Article  Google Scholar 

  16. Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem., Int. Ed. 2005, 44, 2132–2135.

    Article  Google Scholar 

  17. Sasaki, K.; Naohara, H.; Choi, Y.; Cai, Y.; Chen, W. F.; Liu, P.; Adzic, R. R. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 2012, 3, 1115.

    Article  Google Scholar 

  18. Xie, S. F.; Choi, S. I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J. G.; Kim, M. J.; Xie, Z. X.; Mavrikakis, M.; Xia, Y. N. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570–3576.

    Article  Google Scholar 

  19. Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.

    Article  Google Scholar 

  20. Zhang, J. J.; Zhang, P.; Wang, T.; Gong, J. L. Monoclinic WO3 nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting. Nano Energy 2015, 11, 189–195.

    Article  Google Scholar 

  21. Dang, K.; Chang, X. X.; Wang, T.; Gong, J. L. Enhancement of photoelectrochemical oxidation by an amorphous nickel boride catalyst on porous BiVO4. Nanoscale 2017, 9, 16133–16137.

    Article  Google Scholar 

  22. Dang, K.; Wang, T.; Li, C. C.; Zhang, J. J.; Liu, S. S.; Gong, J. L. Improved oxygen evolution kinetics and surface states passivation of Ni-Bi co-catalyst for a hematite photoanode. Engineering 2017, 3, 285–289.

    Article  Google Scholar 

  23. Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-Induced Galvanic Replacement Reaction. J. Am. Chem. Soc. 2011, 133, 6078–6089.

    Article  Google Scholar 

  24. Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

    Article  Google Scholar 

  25. Zhang, P.; Wang, T.; Gong, J. L. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 2015, 27, 5328–5342.

    Article  Google Scholar 

  26. Yu, L.; Hu, H.; Wu, H. B.; Lou, X. W. Complex hollow nanostructures: Synthesis and energy-related applications. Adv. Mater. 2017, 29, 1604563.

    Article  Google Scholar 

  27. Li, A.; Zhang, P.; Chang, X. X.; Cai, W. T.; Wang, T.; Gong, J. L. Gold nanorod@TiO2 yolk-shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small 2015, 11, 1892–1899.

    Article  Google Scholar 

  28. Li, C. C.; Wang, T.; Luo, Z. B.; Liu, S. S.; Gong, J. L. Enhanced charge separation through ALD-modified Fe2O3/Fe2TiO5 nanorod heterojunction for photoelectrochemical water oxidation. Small 2016, 12, 3415–3422.

    Article  Google Scholar 

  29. Zhang, P.; Wang, T.; Zhang, J. J.; Chang, X. X.; Gong, J. L. Bridging the transport pathway of charge carriers in a Ta3N5 nanotube array photoanode for solar water splitting. Nanoscale 2015, 7, 13153–13158.

    Article  Google Scholar 

  30. Xu, S. H.; Li, Z. S.; Lei, F. L.; Wang, Y. L.; Xie, Y. X.; Lin, S. Facile synthesis of hydrangea-like core-shell Pd@Pt/graphene composite as an efficient electrocatalyst for methanol oxidation. Appl. Surf. Sci. 2017, 426, 351–359.

    Article  Google Scholar 

  31. Teran, F. E.; Santos, D. M.; Ribeiro, J.; Kokoh, K. B. Activity of PtSnRh/C nanoparticles for the electrooxidation of C1 and C2 alcohols. Thin Solid Films 2012, 520, 5846–5850.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Key R&D Program of China (No. 2016YFB0600901), the National Natural Science Foundation of China (Nos. U1463205, 21525626, and 21606169) for financial support, and the Program of Introducing Talents of Discipline to Universities (B06006) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Gong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, L., Hu, C. et al. Fabrication of bilayer Pd-Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction. Nano Res. 12, 2268–2274 (2019). https://doi.org/10.1007/s12274-019-2312-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2312-y

Keywords

Navigation