Skip to main content
Log in

Nanomaterials for the abatement of cadmium (II) ions from water/wastewater

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rapid rise of modern industry is the source of unchecked effluents containing many pernicious heavy metals (e.g., cadmium). To rehabilitate the ecology, food resources, and health of humans and animals, various conventional methodologies are being used in wastewater treatment facilities for the abatement of cadmium. Nonetheless, the development of advanced, economical, and efficient adsorbents is needed because of the many shortcomings of conventional methods (e.g., high cost, intensive operation, and inefficiency). Recent advancements in materials science and chemistry have introduced the use of nanomaterials, which possess very high specific surface areas and multiple functionalities, for the removal of specific targets such as cadmium. This review explores the recent developments and trends in nanomaterial adsorption technology for the mitigation of cadmium. The paper further surveys the present obstacles and future opportunities for the advancement of nanomaterial-based technologies in the area of water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borah, R.; Kumari, D.; Gogoi, A.; Biswas, S.; Goswami, R.; Shim, J.; Begum, N. A.; Kumar, M. Efficacy and field applicability of Burmese grape leaf extract (BGLE) for cadmium removal: An implication of metal removal from natural water. Ecotoxicol. Environ. Saf. 2018, 147, 585–593.

    Google Scholar 

  2. Davis, A. D.; Webb, C. J.; Sorensen, J. L.; Dixon, D. J.; Hudson, R. Geochemical thermodynamics of cadmium removal from water with limestone. Environ. Earth Sci. 2018, 77, 37.

    Google Scholar 

  3. Ilic, M.; Jovic, S.; Spalevic, P.; Vujicic, I. Water cycle estimation by neurofuzzy approach. Comp. Electron. Agric. 2017, 135, 1–3.

    Google Scholar 

  4. Vikrant, K.; Kim, K.-H.; Ok, Y. S.; Tsang, D. C. W.; Tsang, Y. F.; Giri, B. S.; Singh, R. S. Engineered/designer biochar for the removal of phosphate in water and wastewater. Sci. Total Environ. 2018, 616–617, 1242–1260.

    Google Scholar 

  5. Gustin, K.; Tofail, F.; Vahter, M.; Kippler, M. Cadmium exposure and cognitive abilities and behavior at 10 years of age: A prospective cohort study. Environ. Int. 2018, 113, 259–268.

    Google Scholar 

  6. Luca, F.-A.; Ciobanu, C.-I.; Andrei, A. G.; Horodnic, A. V. Raising awareness on health impact of the chemicals used in consumer products: Empirical evidence from east-central europe. Sustainability 2018, 10, 209.

    Google Scholar 

  7. Zheng, W.; Xu, Y.-M.; Wu, D.-D.; Yao, Y.; Liang, Z.-L.; Tan, H. W.; Lau, A. T. Y. Acute and chronic cadmium telluride quantum dots-exposed human bronchial epithelial cells: The effects of particle sizes on their cytotoxicity and carcinogenicity. Biochem. Biophys. Res. Commun. 2018, 495, 899–903.

    Google Scholar 

  8. Jacquet, A.; Arnaud, J.; Hininger-Favier, I.; Hazane-Puch, F.; Couturier, K.; Lénon, M.; Lamarche, F.; Ounnas, F.; Fontaine, E.; Moulis, J.-M. et al. Impact of chronic and low cadmium exposure of rats: Sex specific disruption of glucose metabolism. Chemosphere 2018, 207, 764–773.

    Google Scholar 

  9. Belhaj, D.; Athmouni, K.; Ahmed, M. B.; Aoiadni, N.; El Feki, A.; Zhou, J. L.; Ayadi, H. Polysaccharides from Phormidium versicolor (NCC466) protecting HepG2 human hepatocellular carcinoma cells and rat liver tissues from cadmium toxicity: Evidence from in vitro and in vivo tests. Int. J. Biol. Macromol. 2018, 113, 813–820.

    Google Scholar 

  10. Skipper, A.; Sims, J. N.; Yedjou, C. G.; Tchounwou, P. B. Cadmium chloride induces DNA damage and apoptosis of human liver carcinoma cells via oxidative stress. Int. J. Environ. Res. and Public Health 2016, 13, 88.

    Google Scholar 

  11. Dar, M. I.; Green, I. D.; Naikoo, M. I.; Khan, F. A.; Ansari, A. A.; Lone, M. I. Assessment of biotransfer and bioaccumulation of cadmium, lead and zinc from fly ash amended soil in mustard–aphid–beetle food chain. Science of The Total Environment 2017, 584-585, 1221–1229.

    Google Scholar 

  12. Bravo, D.; Pardo-Díaz, S.; Benavides-Erazo, J.; Rengifo-Estrada, G.; Braissant, O.; Leon-Moreno, C. Cadmium and cadmium-tolerant soil bacteria in cacao crops from northeastern Colombia. J. Appl. Microbiol. 2018, 124, 1175–1194.

    Google Scholar 

  13. White, A. J.; O'Brien, K. M.; Jackson, B. P.; Karagas, M. R. Urine and toenail cadmium levels in pregnant women: A reliability study. Environ. Int. 2018, 118, 86–91.

    Google Scholar 

  14. Idrees, N.; Tabassum, B.; Abd_Allah, E. F.; Hashem, A.; Sarah, R.; Hashim, M. Groundwater contamination with cadmium concentrations in some West U.P. Regions, India. Saudi J. Biol. Sci. 2018, 25, 1365–1368.

    Google Scholar 

  15. Kobielska, P. A.; Howarth, A. J.; Farha, O. K.; Nayak, S. Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 2018, 358, 92–107.

    Google Scholar 

  16. Zare, E. N.; Motahari, A.; Sillanpää, M. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review. Environ. Res. 2018, 162, 173–195.

    Google Scholar 

  17. Shakya, M.; Rene, E. R.; Nancharaiah, Y. V.; Lens, P. N. L. Fungal-based nanotechnology for heavy metal removal. In Nanotechnology, Food Security and Water Treatment. Gothandam, K. M.; Ranjan, S.; Dasgupta, N.; Ramalingam, C.; Lichtfouse, E., Eds.; Springer International Publishing: Cham, 2018; pp 229–253.

    Google Scholar 

  18. Burakov, A. E.; Galunin, E. V.; Burakova, I. V.; Kucherova, A. E.; Agarwal, S.; Tkachev, A. G.; Gupta, V. K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712.

    Google Scholar 

  19. Vikrant, K.; Kumar, V.; Kim, K.-H.; Kukkar, D. Metal-organic frameworks (MOFs): Potential and challenges for capture and abatement of ammonia. J. Mater. Chem. A 2017, 5, 22877–22896.

    Google Scholar 

  20. Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. 2018, 356, 147–164.

    Google Scholar 

  21. Azzaza, S.; Kumar, R. T.; Vijaya, J. J.; Bououdina, M. Nanomaterials for heavy metal removal. In Advanced Environmental Analysis: Applications of Nanomaterials, Volume 1. The Royal Society of Chemistry, 2017; pp 139–166.

    Google Scholar 

  22. Ahmad, Z.; Gao, B.; Mosa, A.; Yu, H. W.; Yin, X. Q.; Bashir, A.; Ghoveisi, H.; Wang, S. S. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. J. Clean. Prod. 2018, 180, 437–449.

    Google Scholar 

  23. Ihsanullah; Abbas, A.; Al-Amer, A. M.; Laoui, T.; Al-Marri, M. J.; Nasser, M. S.; Khraisheh, M.; Atieh, M. A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161.

    Google Scholar 

  24. Vikrant, K.; Kim, K.-H. Nanomaterials for the adsorptive treatment of Hg(II) ions from water. Chem. Eng. J. 2019, 358, 264–282.

    Google Scholar 

  25. Ray, P. Z.; Shipley, H. J. Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Adv. 2015, 5, 29885–29907.

    Google Scholar 

  26. Xu, J.; Cao, Z.; Zhang, Y. L.; Yuan, Z. L.; Lou, Z. M.; Xu, X. H.; Wang, X. K. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 2018, 195, 351–364.

    Google Scholar 

  27. Fu, F. L.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418.

    Google Scholar 

  28. Mirbagheri, S. A.; Hosseini, S. N. Pilot plant investigation on petrochemical wastewater treatmentfor the removal of copper and chromium with the objective of reuse. Desalination 2005, 171, 85–93.

    Google Scholar 

  29. Özverdi, A.; Erdem, M. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J. Hazard. Mater. 2006, 137, 626–632.

    Google Scholar 

  30. Tünay, O.; Kabdasli, N. Hydroxide precipitation of complexed metals. Water Res. 1994, 28, 2117–2124.

    Google Scholar 

  31. Matlock, M. M.; Henke, K. R.; Atwood, D. A. Effectiveness of commercial reagents for heavy metal removal from water with new insights for future chelate designs. J. Hazard. Mater. 2002, 92, 129–142.

    Google Scholar 

  32. Matlock, M. M.; Howerton, B. S.; Van Aelstyn, M. A.; Nordstrom, F. L.; Atwood, D. A. Advanced mercury removal from gold leachate solutions prior to gold and silver extraction: A field study from an active gold mine in Peru. Environ. Sci. Technol. 2002, 36, 1636–1639.

    Google Scholar 

  33. Abumaizar, R. J.; Smith, E. H. Heavy metal contaminants removal by soil washing. J. Hazard. Mater. 1999, 70, 71–86.

    Google Scholar 

  34. Matlock, M. M.; Howerton, B. S.; Atwood, D. A. Chemical precipitation of heavy metals from acid mine drainage. Water Res. 2002, 36, 4757–4764.

    Google Scholar 

  35. Fu, F. L.; Chen, R. M.; Xiong, Y. Application of a novel strategy—Coordination polymerization precipitation to the treatment of Cu2+-containing wastewaters. Sep. Purif. Technol. 2006, 52, 388–393.

    Google Scholar 

  36. Fu, F. L.; Zeng, H. Y.; Cai, Q. H.; Qiu, R. L.; Yu, J.; Xiong, Y. Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant. Chemosphere 2007, 69, 1783–1789.

    Google Scholar 

  37. Da¸browski, A.; Hubicki, Z.; Podkoscielny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106.

    Google Scholar 

  38. Erdem, E.; Karapinar, N.; Donat, R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004, 280, 309–314.

    Google Scholar 

  39. Wong, C.-W.; Barford, J. P.; Chen, G. H.; McKay, G. Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin. J. Environ. Chem. Eng. 2014, 2, 698–707.

    Google Scholar 

  40. Ahmed, S.; Chughtai, S.; Keane, M. A. The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite. Sep. Purif. Technol. 1998, 13, 57–64.

    Google Scholar 

  41. da Fonseca, M. G.; de Oliveira, M. M.; Arakaki, L. N. H. Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral. J. Hazard. Mater. 2006, 137, 288–292.

    Google Scholar 

  42. Sanchez, A. G.; Ayuso, E. A.; De Blas, O. J. Sorption of heavy metals from industrial waste water by low-cost mineral silicates. Clay Miner. 1999, 34, 469–477.

    Google Scholar 

  43. Barakat, M. A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377.

    Google Scholar 

  44. Trivunac, K.; Stevanovic, S. Removal of heavy metal ions from water by complexation-assisted ultrafiltration. Chemosphere 2006, 64, 486–491.

    Google Scholar 

  45. Jakobsen, M. R.; Fritt-Rasmussen, J.; Nielsen, S.; Ottosen, L. M. Electrodialytic removal of cadmium from wastewater sludge. J. Hazard. Mater. 2004, 106, 127–132.

    Google Scholar 

  46. Kheriji, J.; Tabassi, D.; Hamrouni, B. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Water Sci. Technol. 2015, 72, 1206–1216.

    Google Scholar 

  47. Cañizares, P.; Pérez, Á.; Camarillo, R. Recovery of heavy metals by means of ultrafiltration with water-soluble polymers: Calculation of design parameters. Desalination 2002, 144, 279–285.

    Google Scholar 

  48. Vijayalakshmi, A.; Arockiasamy, D. L.; Nagendran, A.; Mohan, D. Separation of proteins and toxic heavy metal ions from aqueous solution by CA/PC blend ultrafiltration membranes. Sep. Purif. Technol. 2008, 62, 32–38.

    Google Scholar 

  49. Mbareck, C.; Nguyen, Q. T.; Alaoui, O. T.; Barillier, D. Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water. J. Hazard. Mater. 2009, 171, 93–101.

    Google Scholar 

  50. Adams, F. V.; Nxumalo, E. N.; Krause, R. W. M.; Hoek, E. M. V.; Mamba, B. B. Preparation and characterization of polysulfone/ß-cyclodextrin polyurethane composite nanofiltration membranes. J. Membrane Sci. 2012, 405–406, 291–299.

    Google Scholar 

  51. Landaburu-Aguirre, J.; Pongrácz, E.; Perämäki, P.; Keiski, R. L. Micellarenhanced ultrafiltration for the removal of cadmium and zinc: Use of response surface methodology to improve understanding of process performance and optimisation. J. Hazard. Mater. 2010, 180, 524–534.

    Google Scholar 

  52. Camarillo, R.; Llanos, J.; García-Fernández, L.; Pérez, Á.; Cañizares, P. Treatment of copper (II)-loaded aqueous nitrate solutions by polymer enhanced ultrafiltration and electrodeposition. Sep. Purif. Technol. 2010, 70, 320–328.

    Google Scholar 

  53. Mukherjee, R.; Bhunia, P.; De, S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem. Eng. J. 2016, 292, 284–297.

    Google Scholar 

  54. Ibrahim, G. P. S.; Isloor, A. M.; Inamuddin; Asiri, A. M.; Ismail, A. F.; Kumar, R.; Ahamed, M. I. Performance intensification of the polysulfone ultrafiltration membrane by blending with copolymer encompassing novel derivative of poly(styrene-co-maleic anhydride) for heavy metal removal from wastewater. Chem. Eng. J. 2018, 353, 425–435.

    Google Scholar 

  55. Nataraj, S. K.; Hosamani, K. M.; Aminabhavi, T. M. Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal. Desalination 2007, 217, 181–190.

    Google Scholar 

  56. Duan, J. C.; Lu, Q.; Chen, R. W.; Duan, Y. Q.; Wang, L. F.; Gao, L.; Pan, S. Y. Synthesis of a novel flocculant on the basis of crosslinked Konjac glucomannan-graft-polyacrylamide-co-sodium xanthate and its application in removal of Cu2+ ion. Carbohydr. Polym. 2010, 80, 436–441.

    Google Scholar 

  57. El Samrani, A. G.; Lartiges, B. S.; Villiéras, F. Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization. Water Res. 2008, 42, 951–960.

    Google Scholar 

  58. Rubio, J.; Tessele, F. Removal of heavy metal ions by adsorptive particulate flotation. Miner. Eng. 1997, 10, 671–679.

    Google Scholar 

  59. Blöcher, C.; Dorda, J.; Mavrov, V.; Chmiel, H.; Lazaridis, N. K.; Matis, K. A. Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater. Water Res. 2003, 37, 4018–4026.

    Google Scholar 

  60. Aldrich, C.; Feng, D. Removal of heavy metals from wastewater effluents by biosorptive flotation. Miner. Eng. 2000, 13, 1129–1138.

    Google Scholar 

  61. Polat, H.; Erdogan, D. Heavy metal removal from waste waters by ion flotation. J. Hazard. Mater. 2007, 148, 267–273.

    Google Scholar 

  62. Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Chibane, M. Removal turbidity and separation of heavy metals using electrocoagulation–electroflotation technique: A case study. J. Hazard. Mater. 2009, 164, 215–222.

    Google Scholar 

  63. Belkacem, M.; Khodir, M.; Abdelkrim, S. Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique. Desalination 2008, 228, 245–254.

    Google Scholar 

  64. Bailey, S. E.; Olin, T. J.; Bricka, R. M.; Adrian, D. D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999, 33, 2469–2479.

    Google Scholar 

  65. Babel, S.; Kurniawan, T. A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 2003, 97, 219–243.

    Google Scholar 

  66. Zhou, G. Y.; Luo, J. M.; Liu, C. B.; Chu, L.; Crittenden, J. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Res. 2018, 131, 246–254.

    Google Scholar 

  67. Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour. Technol. 2005, 96, 1518–1521.

    Google Scholar 

  68. Mureseanu, M.; Reiss, A.; Stefanescu, I.; David, E.; Parvulescu, V.; Renard, G.; Hulea, V. Modified SBA-15 mesoporous silica for heavy metal ions remediation. Chemosphere 2008, 73, 1499–1504.

    Google Scholar 

  69. Khraisheh, M. A. M.; Al-degs, Y. S.; Mcminn, W. A. M. Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem. Eng. J. 2004, 99, 177–184.

    Google Scholar 

  70. Yan, G. Y.; Viraraghavan, T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res. 2003, 37, 4486–4496.

    Google Scholar 

  71. Brown, M. J.; Lester, J. N. Metal removal in activated sludge: The role of bacterial extracellular polymers. Water Res. 1979, 13, 817–837.

    Google Scholar 

  72. Inyang, M. I.; Gao, B.; Yao, Y.; Xue, Y. W.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y. S.; Cao, X. D. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433.

    Google Scholar 

  73. Akin Sahbaz, D.; Yakar, A.; Gündüz, U. Magnetic Fe3O4-chitosan microand nanoparticles for wastewater treatment. Particul. Sci. Technol., in press, DOI: 10.1080/02726351.2018.1438544.

  74. Ling, L.; Huang, X.-Y.; Zhang, W.-X. Enrichment of precious metals from wastewater with core–shell nanoparticles of iron. Adv. Mater. 2018, 30, 1705703.

    Google Scholar 

  75. Korina, E.; Stoilova, O.; Manolova, N.; Rashkov, I. Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment. J. Environ. Chem. Eng. 2018, 6, 2075–2084.

    Google Scholar 

  76. Castro, L.; Blázquez, M. L.; González, F.; Muñoz, J. A.; Ballester, A. Heavy metal adsorption using biogenic iron compounds. Hydrometallurgy 2018, 179, 44–51.

    Google Scholar 

  77. Lee, S. C.; Jeong, Y.; Kim, Y. J.; Kim, H.; Lee, H. U.; Lee, Y.-C.; Lee, S. M.; Kim, H. J.; An, H.-R.; Ha, M. G. et al. Hierarchically three-dimensional (3D) nanotubular sea urchin-shaped iron oxide and its application in heavy metal removal and solar-induced photocatalytic degradation. J. Hazard. Mater. 2018, 354, 283–292.

    Google Scholar 

  78. Bagheri, S.; Aghaei, H.; Ghaedi, M.; Asfaram, A.; Monajemi, M.; Bazrafshan, A. A. Synthesis of nanocomposites of iron oxide/gold (Fe3O4/Au) loaded on activated carbon and their application in water treatment by using sonochemistry: Optimization study. Ultrason. Sonochem. 2018, 41, 279–287.

    Google Scholar 

  79. Kumar, K. Y.; Muralidhara, H. B.; Nayaka, Y. A.; Balasubramanyam, J.; Hanumanthappa, H. Hierarchically assembled mesoporous ZnO nanorods for the removal of lead and cadmium by using differential pulse anodic stripping voltammetric method. Powder Technol. 2013, 239, 208–216.

    Google Scholar 

  80. Zha, R. H.; Nadimicherla, R.; Guo, X. Cadmium removal in waste water by nanostructured TiO2 particles. J. Mater. Chem. A 2014, 2, 13932–13941.

    Google Scholar 

  81. Lung, I.; Stan, M.; Opris, O.; Soran, M.-L.; Senila, M.; Stefan, M. Removal of lead(II), cadmium(II), and arsenic(III) from aqueous solution using magnetite nanoparticles prepared by green synthesis with box–behnken design. Anal. Lett. 2018, 51, 2519–2531.

    Google Scholar 

  82. Chen, K.; He, J. Y.; Li, Y. L.; Cai, X. G.; Zhang, K. S.; Liu, T.; Hu, Y.; Lin, D. Y.; Kong, L. T.; Liu, J. H. Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. J. Colloid Interface Sci. 2017, 494, 307–316.

    Google Scholar 

  83. Wang, D.; Guan, K. W.; Bai, Z. P.; Liu, F. Q. Facile preparation of acidresistant magnetite particles for removal of Sb(?) from strong acidic solution. Sci. Technol. Adv. Mater. 2016, 17, 80–88.

    Google Scholar 

  84. Beheshtkhoo, N.; Kouhbanani, M. A. J.; Savardashtaki, A.; Amani, A. M.; Taghizadeh, S. Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl. Phys. A 2018, 124, 363.

    Google Scholar 

  85. Parveen, S.; Wani, A. H.; Shah, M. A.; Devi, H. S.; Bhat, M. Y.; Koka, J. A. Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb. Pathog. 2018, 115, 287–292.

    Google Scholar 

  86. Heiligtag, F. J.; Niederberger, M. The fascinating world of nanoparticle research. Mater. Today 2013, 16, 262–271.

    Google Scholar 

  87. Seo, K.; Sinha, K.; Novitskaya, E.; Graeve, O. A. Polyvinylpyrrolidone (PVP) effects on iron oxide nanoparticle formation. Mater. Lett. 2018, 215, 203–206.

    Google Scholar 

  88. Gholami, L.; Kazemi Oskuee, R.; Tafaghodi, M.; Ramezani Farkhani, A.; Darroudi, M. Green facile synthesis of low-toxic superparamagnetic iron oxide nanoparticles (SPIONs) and their cytotoxicity effects toward Neuro2A and HUVEC cell lines. Ceram. Int. 2018, 44, 9263–9268.

    Google Scholar 

  89. Plachtová, P.; Medríková, Z.; Zboril, R.; Tucek, J.; Varma, R. S.; Maršálek, B. Iron and iron oxide nanoparticles synthesized with green tea extract: differences in ecotoxicological profile and ability to degrade malachite green. ACS Sustainable Chem. Eng. 2018, 6, 8679–8687.

    Google Scholar 

  90. Ehrampoush, M. H.; Miria, M.; Salmani, M. H.; Mahvi, A. H. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J. Environ. Health Sci. Eng. 2015, 13, 84.

    Google Scholar 

  91. Ebrahim, S. E.; Sulaymon, A. H.; Saad Alhares, H. Competitive removal of Cu2+, Cd2+, Zn2+, and Ni2+ ions onto iron oxide nanoparticles from wastewater. Desalin. Water Treat. 2016, 57, 20915–20929.

    Google Scholar 

  92. Devi, V.; Selvaraj, M.; Selvam, P.; Kumar, A. A.; Sankar, S.; Dinakaran, K. Preparation and characterization of CNSR functionalized Fe3O4 magnetic nanoparticles: An efficient adsorbent for the removal of cadmium ion from water. J. Environ. Chem. Eng. 2017, 5, 4539–4546.

    Google Scholar 

  93. OuldM'hamed, M.; Khezami, L.; Alshammari, A. G.; Ould-Mame, S. M.; Ghiloufi, I.; Lemine, O. M. Removal of cadmium(II) ions from aqueous solution using Ni (15 wt.%)-doped aFe2O3 nanocrystals: Equilibrium, thermodynamic, and kinetic studies. Water Sci. Technol. 2015, 72, 608–615.

    Google Scholar 

  94. Wang, Y.; Tian, T.; Wang, L.; Hu, X. Solid-phase preconcentration of cadmium(II) using amino-functionalized magnetic-core silica-shell nanoparticles, and its determination by hydride generation atomic fluorescence spectrometry. Microchim. Acta 2013, 180, 235–242.

    Google Scholar 

  95. Simeonidis, K.; Martinez-Boubeta, C.; Zamora-Perez, P.; Rivera-Gil, P.; Kaprara, E.; Kokkinos, E.; Mitrakas, M. Nanoparticles for heavy metal removal from drinking water. In Environmental Nanotechnology. Dasgupta, N.; Ranjan, S.; Lichtfouse, E., Eds.; Springer International Publishing: Cham, 2018; pp 75–124.

    Google Scholar 

  96. Huang, R. Y.; He, L.; Zhang, T.; Li, D. Q.; Tang, P. G.; Feng, Y. J. Novel carbon paper@magnesium silicate composite porous films: Design, fabrication, and adsorption behavior for heavy metal ions in aqueous solution. ACS Appl. Mater. Interfaces 2018, 10, 22776–22785.

    Google Scholar 

  97. Huang, R. Y.; Wu, M. J.; Zhang, T.; Li, D. Q.; Tang, P. G.; Feng, Y. J. Template-free synthesis of large-pore-size porous magnesium silicate hierarchical nanostructures for high-efficiency removal of heavy metal ions. ACS Sustainable Chem. Eng. 2017, 5, 2774–2780.

    Google Scholar 

  98. Cao, C. Y.; Wei, F.; Qu, J.; Song, W. G. Programmed synthesis of magnetic magnesium silicate nanotubes with high adsorption capacities for lead and cadmium ions. Chem.—Eur. J. 2013, 19, 1558–1562.

    Google Scholar 

  99. Garadkar, K. M.; Kadam, A. N.; Park, J. Microwave-assisted sol-gel synthesis of metal oxide nanomaterials. In Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications. Klein, L.; Aparicio, M.; Jitianu, A., Eds.; Springer International Publishing: Cham, 2018; pp 483–504.

    Google Scholar 

  100. Yang, Z.-F.; Li, L.-Y.; Hsieh, C.-T.; Juang, R.-S. Co-precipitation of magnetic Fe3O4 nanoparticles onto carbon nanotubes for removal of copper ions from aqueous solution. J. Taiwan Inst. Chem. Eng. 2018, 82, 56–63.

    Google Scholar 

  101. Aseem, A.; Jeba, G. G.; Conato, M. T.; Rimer, J. D.; Harold, M. P. Oxidative coupling of methane over mixed metal oxide catalysts: Steady state multiplicity and catalyst durability. Chem. Eng. J. 2018, 331, 132–143.

    Google Scholar 

  102. Behnoudnia, F.; Dehghani, H. Anion effect on the control of morphology for NiC2O4·2H2O nanostructures as precursors for synthesis of Ni(OH)2 and NiO nanostructures and their application for removing heavy metal ions of cadmium(II) and lead(II). Dalton Trans. 2014, 43, 3471–3478.

    Google Scholar 

  103. Gupta, V. K.; Nayak, A. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J. 2012, 180, 81–90.

    Google Scholar 

  104. Gusain, D.; Singh, P. K.; Sharma, Y. C. Kinetic and equilibrium modelling of adsorption of cadmium on nano crystalline zirconia using response surface methodology. Environ. Nanotechnol. Monit. Manag. 2016, 6, 99–107.

    Google Scholar 

  105. Bhanjana, G.; Dilbaghi, N.; Singhal, N. K.; Kim, K.-H.; Kumar, S. Copper oxide nanoblades as novel adsorbent material for cadmium removal. Ceram. Int. 2017, 43, 6075–6081.

    Google Scholar 

  106. Mahdavi, S. Nano-TiO2 modified with natural and chemical compounds as efficient adsorbents for the removal of Cd+2, Cu+2, and Ni+2 from water. Clean Technol. Environ. Policy 2016, 18, 81–94.

    Google Scholar 

  107. Li, X.; Zhao, K.; You, C. Y.; Linghu, W.; Ye, F.; Yu, M.; Alsaedi, A.; Hayat, T.; Pan, H.; Luo, J. et al. Nanocomposites of polyaniline functionalized graphene oxide: Synthesis and application as a novel platform for removal of Cd(II), Eu(III), Th(IV) and U(VI) in water. J. Radioanal. Nucl. Chem. 2018, 315, 509–522.

    Google Scholar 

  108. Moosavian, M. A.; Moazezi, N. Removal of cadmium and zinc ions from industrial wastewater using nanocomposites of PANI/ZnO and PANI/ CoHCF: A comparative study. Desalin. Water Treat. 2016, 57, 20817–20836.

    Google Scholar 

  109. Rai, P. K.; Kumar, V.; Lee, S.; Raza, N.; Kim, K.-H.; Ok, Y. S.; Tsang, D. C. W. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environ. Int. 2018, 119, 1–19.

    Google Scholar 

  110. Cao, Y. The toxicity of nanoparticles to human endothelial cells. In Cellular and Molecular Toxicology of Nanoparticles. Saquib, Q.; Faisal, M.; Al-Khedhairy, A. A.; Alatar, A. A., Eds.; Springer International Publishing: Cham, 2018; pp 59–69.

    Google Scholar 

  111. Girigoswami, K. Toxicity of metal oxide nanoparticles. In Cellular and Molecular Toxicology of Nanoparticles. Saquib, Q.; Faisal, M.; Al-Khedhairy, A. A.; Alatar, A. A., Eds.; Springer International Publishing: Cham, 2018; pp 99–122.

    Google Scholar 

  112. Kovalishyn, V.; Abramenko, N.; Kopernyk, I.; Charochkina, L.; Metelytsia, L.; Tetko, I. V.; Peijnenburg, W.; Kustov, L. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform. Food Chem. Toxicol. 2018, 112, 507–517.

    Google Scholar 

  113. Zhang, Y.; Meng, T. T.; Guo, X.; Yang, R. X.; Si, X. H.; Zhou, J. T. Humic acid alleviates the ecotoxicity of graphene-family materials on the freshwater microalgae Scenedesmus obliquus. Chemosphere 2018, 197, 749–758.

    Google Scholar 

  114. Lau, W.-J.; Emadzadeh, D.; Shahrin, S.; Goh, P. S.; Ismail, A. F. Ultrafiltration membranes incorporated with carbon-based nanomaterials for antifouling improvement and heavy metal removal. In Carbon-Based Polymer Nanocomposites for Environmental and Energy Applications. Ismail, A. F.; Goh, P. S., Eds.; Elsevier: Netherlands, 2018; pp 217–232.

    Google Scholar 

  115. Yang, T.; Hodson, M. E. Investigating the potential of synthetic humiclike acid to remove metal ions from contaminated water. Sci. Total Environ. 2018, 635, 1036–1046.

    Google Scholar 

  116. Chen, Q. Q.; Yin, D. Q.; Zhu, S. J.; Hu, X. L. Adsorption of cadmium(II) on humic acid coated titanium dioxide. J. Colloid Interface Sci. 2012, 367, 241–248.

    Google Scholar 

  117. Crini, G.; Lichtfouse, E.; Wilson, L. D.; Morin-Crini, N. Adsorptionoriented processes using conventional and non-conventional adsorbents for wastewater treatment. In Green Adsorbents for Pollutant Removal: Fundamentals and Design. Crini, G.; Lichtfouse, E., Eds.; Springer International Publishing: Cham, 2018; pp 23–71.

    Google Scholar 

  118. Ji, Y. J.; Yang, M. Y.; Lin, H. P.; Hou, T. J.; Wang, L.; Li, Y. Y.; Lee, S.-T. Janus structures of transition metal dichalcogenides as the heterojunction photocatalysts for water splitting. J. Phys. Chem. C 2018, 122, 3123–3129.

    Google Scholar 

  119. Alabi, A.; AlHajaj, A.; Cseri, L.; Szekely, G.; Budd, P.; Zou, L. D. Review of nanomaterials-assisted ion exchange membranes for electromembrane desalination. npj Clean Water 2018, 1, 10.

    Google Scholar 

  120. Deshmukh, M. A.; Shirsat, M. D.; Ramanaviciene, A.; Ramanavicius, A. Composites based on conducting polymers and carbon nanomaterials for heavy metal ion sensing (review). Crit. Rev. Anal. Chem. 2018, 48, 293–304.

    Google Scholar 

  121. Hua, M.; Jiang, Y. N.; Wu, B.; Pan, B. C.; Zhao, X.; Zhang, Q. X. Fabrication of a new hydrous Zr(IV) oxide-based nanocomposite for enhanced Pb(II) and Cd(II) removal from waters. ACS Appl. Mater. Interfaces 2013, 5, 12135–12142.

    Google Scholar 

  122. Yang, S. M.; Morozovska, A. N.; Kumar, R.; Eliseev, E. A.; Cao, Y.; Mazet, L.; Balke, N.; Jesse, S.; Vasudevan, R. K.; Dubourdieu, C. et al. V. Mixed electrochemical–ferroelectric states in nanoscale ferroelectrics. Nat. Phys. 2017, 13, 812–818.

    Google Scholar 

  123. Naeem, H.; Ajmal, M.; Muntha, S.; Ambreen, J.; Siddiq, M. Synthesis and characterization of graphene oxide sheets integrated with gold nanoparticles and their applications to adsorptive removal and catalytic reduction of water contaminants. RSC Adv. 2018, 8, 3599–3610.

    Google Scholar 

  124. Mauter, M. S.; Zucker, I.; Perreault, F.; Werber, J. R.; Kim, J.-H.; Elimelech, M. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 2018, 1, 166–175.

    Google Scholar 

  125. Kunduru, K. R.; Nazarkovsky, M.; Farah, S.; Pawar, R. P.; Basu, A.; Domb, A. J. Nanotechnology for water purification: Applications of nanotechnology methods in wastewater treatment. In Water Purification. Grumezescu, A. M., Ed.; Academic Press: London, UK, 2017; pp 33–74.

    Google Scholar 

  126. Amil Usmani, M.; Khan, I. H.; Bhat, H.; Pillai, R. S.; Ahmad, N.; Mohamad Haafiz, M. K.; Oves, M. Current trend in the application of nanoparticles for waste water treatment and purification: A review. Curr. Org. Synth. 2017, 14, 206–226.

    Google Scholar 

  127. Xue, W. J.; Huang, D. L.; Zeng, G. M.; Wan, J.; Zhang, C.; Xu, R.; Cheng, M.; Deng, R. Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments. J. Hazard. Mater. 2018, 341, 381–389.

    Google Scholar 

  128. Yang, F.; Zhang, S. S.; Sun, Y. Q.; Cheng, K.; Li, J. S.; Tsang, D. C. W. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresource Technol. 2018, 265, 490–497.

    Google Scholar 

  129. Su, Y. M.; Adeleye, A. S.; Huang, Y. X.; Sun, X. Y.; Dai, C. M.; Zhou, X. F.; Zhang, Y. L.; Keller, A. A. Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Res. 2014, 63, 102–111.

    Google Scholar 

  130. Li, Z. T.; Wang, L.; Meng, J.; Liu, X. M.; Xu, J. M.; Wang, F.; Brookes, P. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. J. Hazard. Mater. 2018, 344, 1–11.

    Google Scholar 

  131. Lin, J. J.; Su, B. L.; Sun, M. Q.; Chen, B.; Chen, Z. L. Biosynthesized iron oxide nanoparticles used for optimized removal of cadmium with response surface methodology. Sci. Total Environ. 2018, 627, 314–321.

    Google Scholar 

  132. Boparai, H. K.; Joseph, M.; O’Carroll, D. M. Cadmium (Cd2+) removal by nano zerovalent iron: Surface analysis, effects of solution chemistry and surface complexation modeling. Environ. Sci. Pollut. Res. 2013, 20, 6210–6221.

    Google Scholar 

  133. Fan, D. M.; Lan, Y.; Tratnyek, P. G.; Johnson, R. L.; Filip, J.; O’Carroll, D. M.; Nunez Garcia, A.; Agrawal, A. Sulfidation of iron-based materials: A review of processes and implications for water treatment and remediation. Environ. Sci. Technol. 2017, 51, 13070–13085.

    Google Scholar 

  134. Podyacheva, O. Y.; Cherepanova, S. V.; Romanenko, A. I.; Kibis, L. S.; Svintsitskiy, D. A.; Boronin, A. I.; Stonkus, O. A.; Suboch, A. N.; Puzynin, A. V.; Ismagilov, Z. R. Nitrogen doped carbon nanotubes and nanofibers: Composition, structure, electrical conductivity and capacity properties. Carbon 2017, 122, 475–483.

    Google Scholar 

  135. Su, Y. M.; Adeleye, A. S.; Huang, Y. X.; Zhou, X. F.; Keller, A. A.; Zhang, Y. L. Direct synthesis of novel and reactive sulfide-modified nano iron through nanoparticle seeding for improved cadmium-contaminated water treatment. Sci. Rep. 2016, 6, 24358.

    Google Scholar 

  136. Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

    Google Scholar 

  137. Roobakhsh, S.; Rostami, Z.; Azizian, S. Can MoS2 nanosheets be used as adsorbent for water treatment? Sep. Purif. Technol. 2018, 200, 23–28.

    Google Scholar 

  138. Khalili, S. S.; Dehghani, H.; Afrooz, M. New porphyrin-doped silica monolith: An effective adsorbent for heavy metal ions in aqueous solution. J. Sol-Gel Sci. Technol. 2018, 85, 290–301.

    Google Scholar 

  139. Yin, W. Y.; Dong, X. H.; Yu, J.; Pan, J.; Yao, Z. Y.; Gu, Z. J.; Zhao, Y. L. MoS2-nanosheet-assisted coordination of metal ions with porphyrin for rapid detection and removal of cadmium ions in aqueous media. ACS Appl. Mater. Interfaces 2017, 9, 21362–21370.

    Google Scholar 

  140. Evans, J. S.; Guo, T. B.; Sun, Y. R.; Liu, W.; Peng, L.; Xu, Z.; Gao, C.; He, S. L. Shape-controlled of ten-nanometer-thick graphite and worm-like graphite by lithographic exfoliation. Carbon 2018, 135, 248–252.

    Google Scholar 

  141. Sadegh, H.; Ali, G. A. M.; Gupta, V. K.; Makhlouf, A. S. H.; Shahryarighoshekandi, R.; Nadagouda, M. N.; Sillanpää, M.; Megiel, E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem. 2017, 7, 1–14.

    Google Scholar 

  142. Krajina, B. A.; Proctor, A. C.; Schoen, A. P.; Spakowitz, A. J.; Heilshorn, S. C. Biotemplated synthesis of inorganic materials: An emerging paradigm for nanomaterial synthesis inspired by nature. Prog. Mater. Sci. 2018, 91, 1–23.

    Google Scholar 

  143. Qiu, L.; McCaffrey, R.; Zhang, W. Synthesis of metallic nanoparticles using closed-shell structures as templates. Chem.—Asian J. 2018, 13, 362–372.

    Google Scholar 

  144. Das, S. K.; Shome, I.; Guha, A. K. Surface functionalization of Aspergillus versicolor mycelia: In situ fabrication of cadmium sulphide nanoparticles and removal of cadmium ions from aqueous solution. RSC Adv. 2012, 2, 3000–3007.

    Google Scholar 

  145. Gopalakrishnan, I.; Sugaraj Samuel, R.; Sridharan, K. Nanomaterialsbased adsorbents for water and wastewater treatments. In Emerging Trends of Nanotechnology in Environment and Sustainability: A Review-Based Approach. Sridharan, K., Ed.; Springer International Publishing: Cham, 2018; pp 89–98.

    Google Scholar 

  146. Lim, J. Y.; Mubarak, N. M.; Abdullah, E. C.; Nizamuddin, S.; Khalid, M.; Inamuddin. Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals—A review. J. Ind. Eng. Chem. 2018, 66, 29–44.

    Google Scholar 

  147. Sarkar, B.; Mandal, S.; Tsang, Y. F.; Kumar, P.; Kim, K.-H.; Ok, Y. S. Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review. Sci. Total Environ. 2018, 612, 561–581.

    Google Scholar 

  148. Bhanjana, G.; Dilbaghi, N.; Kim, K.-H.; Kumar, S. Carbon nanotubes as sorbent material for removal of cadmium. J. Mol. Liq. 2017, 242, 966–970.

    Google Scholar 

  149. Diaz-Flores, P. E.; López-Urías, F.; Terrones, M.; Rangel-Mendez, J. R. Simultaneous adsorption of Cd2+ and phenol on modified N-doped carbon nanotubes: Experimental and DFT studies. J. Colloid Interface Sci. 2009, 334, 124–131.

    Google Scholar 

  150. Rocha, R. P.; Soares, O. S. G. P.; Gonçalves, A. G.; Órfão, J. J. M.; Pereira, M. F. R.; Figueiredo, J. L. Different methodologies for synthesis of nitrogen doped carbon nanotubes and their use in catalytic wet air oxidation. Appl. Catal. A: Gen. 2017, 548, 62–70.

    Google Scholar 

  151. Pei, H. N.; Wang, J.; Yang, Q. F.; Yang, W. X.; Hu, N.; Suo, Y. R.; Zhang, D. H.; Li, Z. H.; Wang, J. L. Interfacial growth of nitrogen-doped carbon with multi-functional groups on the MoS2 skeleton for efficient Pb(II) removal. Sci. Total Environ. 2018, 631–632, 912–920.

    Google Scholar 

  152. Perez-Aguilar, N. V.; Muñoz-Sandoval, E.; Diaz-Flores, P. E.; Rangel-Mendez, J. R. Adsorption of cadmium and lead onto oxidized nitrogendoped multiwall carbon nanotubes in aqueous solution: Equilibrium and kinetics. J. Nanopart. Res. 2010, 12, 467–480.

    Google Scholar 

  153. Tahermansouri, H.; Ahi Roghayeh, M.; Kiani, F. Kinetic, equilibrium and isotherm studies of cadmium removal from aqueous solutions by oxidized multi-walled carbon nanotubes and the functionalized ones with thiosemicarbazide and their toxicity investigations: A comparison. J. Chin. Chem. Soc. 2014, 61, 1188–1198.

    Google Scholar 

  154. AlSaadi, M. A.; Al Mamun, A.; Alam, M. Z.; Amosa, M. K.; Atieh, M. A. Removal of cadmium from water by CNT–PAC composite: Effect of functionalization. Nano 2015, 11, 1650011.

    Google Scholar 

  155. Velickovic, Z. S.; Bajic, Z. J.; Ristic, M. D.; Djokic, V. R.; Marinkovic, A. D.; Uskokovic P. S.; Vuruna, M. M. Modification of multi-wall carbon nanotubes for the removal of cadmium, lead and arsenic from wastewater. Dig. J. Nanomater. Bios. 2013, 8, 501–511.

    Google Scholar 

  156. Song, X. Y.; Guo, H.; Tao, J. B.; Zhao, S. L.; Han, X.; Liu, H. L. Encapsulation of single-walled carbon nanotubes with asymmetric pyrenylgemini surfactants. Chem. Eng. Sci. 2018, 187, 406–414.

    Google Scholar 

  157. Pashai Gatabi, M.; Milani Moghaddam, H.; Ghorbani, M. Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: Equilibrium, kinetic, and thermodynamic study. J. Nanopart. Res. 2016, 18, 189.

    Google Scholar 

  158. Samaddar, P.; Son, Y.-S.; Tsang, D. C. W.; Kim, K.-H.; Kumar, S. Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coord. Chem. Rev. 2018, 368, 93–114.

    Google Scholar 

  159. Sherlala, A. I. A.; Raman, A. A. A.; Bello, M. M.; Asghar, A. A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere 2018, 193, 1004–1017.

    Google Scholar 

  160. Deng, J.-H.; Zhang, X.-R.; Zeng, G.-M.; Gong, J.-L.; Niu, Q.-Y.; Liang, J. Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem. Eng. J. 2013, 226, 189–200.

    Google Scholar 

  161. Shaheen, S. M.; Niazi, N. K.; Hassan, N. E. E.; Bibi, I.; Wang, H. L.; Tsang, D. C. W.; Ok, Y. S.; Bolan, N.; Rinklebe, J. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review. Int. Mater. Rev., in press, DOI: 10.1080/09506608.2018.1473096.

  162. Xu, G.; Wang, L.; Xie, Y. J.; Tao, M. L.; Zhang, W. Q. Highly selective and efficient adsorption of Hg2+ by a recyclable aminophosphonic acid functionalized polyacrylonitrile fiber. J. Hazard. Mater. 2018, 344, 679–688.

    Google Scholar 

  163. Banazadeh, A.; Mozaffari, S.; Osoli, B. Facile synthesis of cysteine functionalized magnetic graphene oxide nanosheets: Application in solid phase extraction of cadmium from environmental sample. J. Environ. Chem. Eng. 2015, 3, 2801–2808.

    Google Scholar 

  164. Ghorbani, M.; Shams, A.; Seyedin, O.; Afshar Lahoori, N. Magnetic ethylene diamine-functionalized graphene oxide as novel sorbent for removal of lead and cadmium ions from wastewater samples. Environ. Sci. Pollut. Res. 2018, 25, 5655–5667.

    Google Scholar 

  165. Liu, J.; Du, H. Y.; Yuan, S. W.; He, W. X.; Liu, Z. H. Synthesis of thiol-functionalized magnetic graphene as adsorbent for Cd(II) removal from aqueous systems. J. Environ. Chem. Eng. 2015, 3, 617–621.

    Google Scholar 

  166. Liu, J.; Du, H. Y.; Yuan, S. W.; He, W. X.; Yan, P. J.; Liu, Z. H. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions. Water Sci. Technol. 2015, 71, 1611–1619.

    Google Scholar 

  167. Poo, K.-M.; Son, E.-B.; Chang, J.-S.; Ren, X. H.; Choi, Y.-J.; Chae, K.-J. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution. J. Environ. Manag. 2018, 206, 364–372.

    Google Scholar 

  168. Zhang, Y.; Cao, B.; Zhao, L. L.; Sun, L. L.; Gao, Y.; Li, J. J.; Yang, F. Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Appl. Surf. Sci. 2018, 427, 147–155.

    Google Scholar 

  169. Liu, T. Z.; Gao, B.; Fang, J.; Wang, B.; Cao, X. D. Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(II) and Cd(II) removal. RSC Adv. 2016, 6, 24314–24319.

    Google Scholar 

  170. Jlassi, K.; Abidi, R.; Benna, M.; Chehimi, M. M.; Kasak, P.; Krupa, I. Bentonite-decorated calix [4] arene: A new, promising hybrid material for heavy-metal removal. Appl. Clay Sci. 2018, 161, 15–22.

    Google Scholar 

  171. Liu, Y. N.; Zhong, Z. M. Extraction of heavy metals, dichromate anions and rare metals by new calixarene-chitosan polymers. J. Inorg. Organomet. Polym. Mater. 2018, 28, 962–967.

    Google Scholar 

  172. Liu, C.; Zhang, D. X.; Zhao, L. T.; Lu, X.; Zhang, P.; He, S. N.; Hu, G. W.; Tang, X. Q. Synthesis of a thiacalix[4]arenetetrasulfonate-functionalized reduced graphene oxide adsorbent for the removal of lead(II) and cadmium(II) from aqueous solutions. RSC Adv. 2016, 6, 113352–113365.

    Google Scholar 

  173. Vikrant, K.; Kumar, V.; Ok, Y. S.; Kim, K.-H.; Deep, A. Metal-organic framework (MOF)-based advanced sensing platforms for the detection of hydrogen sulfide. TrAC Trend. Anal. Chem. 2018, 105, 263–281.

    Google Scholar 

  174. Fan, M.; Li, T.; Hu, J.; Cao, R.; Wei, X.; Shi, X.; Ruan, W. Artificial neural network modeling and genetic algorithm optimization for cadmium removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Materials (Basel) 2017, 10, E544.

    Google Scholar 

  175. Kong, Q. P.; Wei, C. H.; Preis, S.; Hu, Y.; Wang, F. Facile preparation of nitrogen and sulfur co-doped graphene-based aerogel for simultaneous removal of Cd2+ and organic dyes. Environ. Sci. Pollut. Res. 2018, 25, 21164–21175.

    Google Scholar 

  176. Dong, C. C.; Lu, J.; Qiu, B. C.; Shen, B.; Xing, M. Y.; Zhang, J. L. Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Appl. Catal. B: Environ. 2018, 222, 146–156.

    Google Scholar 

  177. Wu, S. B.; Zhang, K. S.; Wang, X. L.; Jia, Y.; Sun, B.; Luo, T.; Meng, F. L.; Jin, Z.; Lin, D. Y.; Shen, W. et al. Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide. Chem. Eng. J. 2015, 262, 1292–1302.

    Google Scholar 

  178. Anirudhan, T. S.; Shainy, F. Adsorption behaviour of 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite for cadmium(II) from aqueous solutions. J. Ind. Eng. Chem. 2015, 32, 157–166.

    Google Scholar 

  179. Kardam, A.; Raj, K. R.; Srivastava, S.; Srivastava, M. M. Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol. Environ. Policy 2014, 16, 385–393.

    Google Scholar 

  180. Sharma, P. R.; Chattopadhyay, A.; Sharma, S. K.; Geng, L. H.; Amiralian, N.; Martin, D.; Hsiao, B. S. Nanocellulose from spinifex as an effective adsorbent to remove cadmium(II) from water. ACS Sustainable Chem. Eng. 2018, 6, 3279–3290.

    Google Scholar 

  181. Abraham, E.; Deepa, B.; Pothan, L. A.; Jacob, M.; Thomas, S.; Cvelbar, U.; Anandjiwala, R. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydr. Polym. 2011, 86, 1468–1475.

    Google Scholar 

  182. Alizadeh, B.; Delnavaz, M.; Shakeri, A. Removal of Cd(II) and phenol using novel cross-linked magnetic EDTA/chitosan/TiO2 nanocomposite. Carbohydr. Polym. 2018, 181, 675–683.

    Google Scholar 

  183. Zhang, S.; Lü, T.; Qi, D. M.; Cao, Z. H.; Zhang, D.; Zhao, H. T. Synthesis of quaternized chitosan-coated magnetic nanoparticles for oil-water separation. Mater. Lett. 2017, 191, 128–131.

    Google Scholar 

  184. Zhou, L. M.; Wang, Y. P.; Liu, Z. R.; Huang, Q. W. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J. Hazard. Mater. 2009, 161, 995–1002.

    Google Scholar 

  185. Zhu, Y. H.; Hu, J.; Wang, J. L. Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. J. Hazard. Mater. 2012, 221–222, 155–161.

    Google Scholar 

  186. Monier, M.; Ayad, D. M.; Wei, Y.; Sarhan, A. A. Adsorption of Cu(II), Co(II), and Ni(II) ions by modified magnetic chitosan chelating resin. J. Hazard. Mater. 2010, 177, 962–970.

    Google Scholar 

  187. Repo, E.; Warchol, J. K.; Kurniawan, T. A.; Sillanpää, M. E. T. Adsorption of Co(II) and Ni(II) by EDTA-and/or DTPA-modified chitosan: Kinetic and equilibrium modeling. Chem. Eng. J. 2010, 161, 73–82.

    Google Scholar 

  188. Zhao, F. P.; Repo, E.; Yin, D. L.; Sillanpää, M. E. T. Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: Kinetics and isotherms. J. Colloid Interface Sci. 2013, 409, 174–182.

    Google Scholar 

  189. Salah, T. A.; Mohammad, A. M.; Hassan, M. A.; El-Anadouli, B. E. Development of nano-hydroxyapatite/chitosan composite for cadmium ions removal in wastewater treatment. J. Taiwan Inst. Chem. Eng. 2014, 45, 1571–1577.

    Google Scholar 

  190. Chen, L. Y.; Wu, P. X.; Chen, M. Q.; Lai, X. L.; Ahmed, Z.; Zhu, N. W.; Dang, Z.; Bi, Y. Z.; Liu, T. Y. Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead. Appl. Clay Sci. 2018, 159, 74–82.

    Google Scholar 

  191. Hossein Beyki, M.; Ghasemi, M. H.; Jamali, A.; Shemirani, F. A novel polylysine–resorcinol base γ-alumina nanotube hybrid material for effective adsorption/preconcentration of cadmium from various matrices. J. Ind. Eng. Chem. 2017, 46, 165–174.

    Google Scholar 

  192. Awual, M. R.; Khraisheh, M.; Alharthi, N. H.; Luqman, M.; Islam, A.; Rezaul Karim, M.; Rahman, M. M.; Khaleque, M. A. Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials. Chem. Eng. J. 2018, 343, 118–127.

    Google Scholar 

  193. Cao, C.-Y.; Qu, J.; Wei, F.; Liu, H.; Song, W.-G. Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions. ACS Appl. Mater. Interfaces 2012, 4, 4283–4287.

    Google Scholar 

  194. Keochaiyom, B.; Wan, J.; Zeng, G. M.; Huang, D. L.; Xue, W. J.; Hu, L.; Huang, C.; Zhang, C.; Cheng, M. Synthesis and application of magnetic chlorapatite nanoparticles for zinc(II), cadmium(II) and lead(II) removal from water solutions. J. Colloid Interface Sci. 2017, 505, 824–835.

    Google Scholar 

  195. Tabesh, S.; Davar, F.; Loghman-Estarki, M. R. Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J. Alloy. Compd. 2018, 730, 441–449.

    Google Scholar 

  196. Zhang, Z. Z.; Li, M. Y.; Chen, W.; Zhu, S. Z.; Liu, N. N.; Zhu, L. Y. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environ. Pollut. 2010, 158, 514–519.

    Google Scholar 

  197. da Rocha, N. C.; de Campos, R. C.; Rossi, A. M.; Moreira, E. L.; do F. Barbosa, A.; Moure, G. T. Cadmium uptake by hydroxyapatite synthesized in different conditions and submitted to thermal treatment. Environ. Sci. Technol. 2002, 36, 1630–1635.

    Google Scholar 

  198. Tran, H. N.; You, S.-J.; Chao, H.-P. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. J. Environ. Chem. Eng. 2016, 4, 2671–2682.

    Google Scholar 

  199. Al-Khaldi, F. A.; Abu-Sharkh, B.; Abulkibash, A. M.; Atieh, M. A. Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: A comparative study. Desalin. Water Treat. 2015, 53, 1417–1429.

    Google Scholar 

  200. Wasewar, K. L.; Kumar, P.; Chand, S.; Padmini, B. N.; Teng, T. T. Adsorption of cadmium ions from aqueous solution using granular activated carbon and activated clay. CLEAN 2010, 38, 649–656.

    Google Scholar 

  201. Mathialagan, T.; Viraraghavan, T. Adsorption of cadmium from aqueous solutions by perlite. J. Hazard. Mater. 2002, 94, 291–303.

    Google Scholar 

  202. Taamneh, Y.; Sharadqah, S. The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Appl. Water Sci. 2017, 7, 2021–2028.

    Google Scholar 

  203. Yang, T.; Li, Y.-K.; Chen, M.-L.; Wang, J.-H. Supported carbon dots decorated with metallothionein for selective cadmium adsorption and removal. Chin. Chem. Lett. 2015, 26, 1496–1501.

    Google Scholar 

  204. Sigma-Aldrich. Carbon nanotube, multi-walled [Online]. Merck KGaA: South Korea, 2018; https://www.sigmaaldrich.com/catalog/product/aldrich/659258?lang=ko&region=KR (accessed Oct 10, 2018).

  205. Sigma-Aldrich. Zeolite [Online]. Merck KGaA: South Korea, 2018; https://www.sigmaaldrich.com/catalog/product/sigma/96096?lang=ko&region=KR (accessed Oct 10, 2018).

  206. Kabir, E.; Kumar, V.; Kim, K.-H.; Yip, A. C. K.; Sohn, J. R. Environmental impacts of nanomaterials. J. Environ. Manag. 2018, 225, 261–271.

    Google Scholar 

  207. Mubarak, N. M.; Sahu, J. N.; Abdullah, E. C.; Jayakumar, N. S. Removal of heavy metals from wastewater using carbon nanotubes. Sep. Purif. Rev. 2014, 43, 311–338.

    Google Scholar 

  208. Das, R.; Ali, M. E.; Hamid, S. B. A.; Ramakrishna, S.; Chowdhury, Z. Z. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 2014, 336, 97–109.

    Google Scholar 

  209. Awual, M. R. Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chem. Eng. J. 2017, 307, 456–465.

    Google Scholar 

  210. Naseeruteen, F.; Hamid, N. S. A.; Suah, F. B. M.; Ngah, W. S. W.; Mehamod, F. S. Adsorption of malachite green from aqueous solution by using novel chitosan ionic liquid beads. Int. J. Biol. Macromol. 2018, 107, 1270–1277.

    Google Scholar 

  211. Han, Z. Y.; Guo, Z. H.; Zhang, Y.; Xiao, X. Y.; Xu, Z.; Sun, Y. Adsorptionpyrolysis technology for recovering heavy metals in solution using contaminated biomass phytoremediation. Resour. Conservat. Recycl. 2018, 129, 20–26.

    Google Scholar 

  212. Mahar, A.; Wang, P.; Ali, A.; Awasthi, M. K.; Lahori, A. H.; Wang, Q.; Li, R. H.; Zhang, Z. Q. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121.

    Google Scholar 

  213. Lievens, C.; Yperman, J.; Vangronsveld, J.; Carleer, R. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals. Fuel 2008, 87, 1894–1905.

    Google Scholar 

  214. Stals, M.; Thijssen, E.; Vangronsveld, J.; Carleer, R.; Schreurs, S.; Yperman, J. Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals. J. Anal. Appl. Pyrol. 2010, 87, 1–7.

    Google Scholar 

  215. Nassar, N. N. Kinetics, equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nanoadsorbents. Can. J. Chem. Eng. 2012, 90, 1231–1238.

    Google Scholar 

  216. Jafarinejad, S.; Faraji, M.; Norouz, Z.; Mokhtari-Aliabad, J. Application of sulfur-modified magnetic nanoparticles for cadmium removal from aqueous solutions. J. Water Environ. Nanotechnol. 2018, 3, 58–69.

    Google Scholar 

  217. Xu, Z. H.; Zhang, D. F.; Chen, W. F.; Li, Y. R.; Yuan, S. J. Nanoscale iron oxides loaded granular activated carbon (GAC-NSIO) for cadmium removal. Desal. Water Treat. 2016, 57, 3559–3571.

    Google Scholar 

  218. Zuo, Y.; Chen, G. Q.; Zeng, G. M.; Li, Z. W.; Yan, M.; Chen, A. W.; Guo, Z.; Huang, Z. Z.; Tan, Q. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions. J. Hazard. Mater. 2015, 285, 236–244.

    Google Scholar 

  219. Vukovic, G. D.; Marinkovic, A. D.; Colic, M.; Ristic, M. Ð.; Aleksic, R.; Peric-Grujic, A. A.; Uskokovic, P. S. Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes. Chem. Eng. J. 2010, 157, 238–248.

    Google Scholar 

  220. Tshwenya, L.; Arotiba, O. A. Ethylenediamine functionalized carbon nanoparticles: Synthesis, characterization, and evaluation for cadmium removal from water. RSC Adv. 2017, 7, 34226–34235.

    Google Scholar 

  221. National Nanotechnology Initiative. Benefits and Applications of nanomaterials [Online]. United States: National Nanotechnology Initiative, 2018; https://www.nano.gov/you/nanotechnology-benefits (accessed Oct 8, 2019).

  222. Valli, F.; Tijoriwala, K.; Mahapatra, A. Nanotechnology for water purification. Int. J. Nucl. Desalin. 2010, 4, 49–57.

    Google Scholar 

  223. Baruah, S.; Dutta, J. Nanotechnology applications in pollution sensing and degradation in agriculture: A review. Environ. Chem. Lett. 2009, 7, 191–204.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support made by the R&D Center for Green Patrol Technologies through the R&D for Global Top Environmental Technologies funded by the Ministry of Environment (MOE 2018001850001) as well as a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2016R1E1A1A01940995). This work was also supported by “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ014297)” Rural Development Administration, Republic of Korea. V. K. acknowledges the support from the Department of Science and Technology, New Delhi, India, in the form of an INSPIRE Faculty Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikrant, K., Kumar, V., Vellingiri, K. et al. Nanomaterials for the abatement of cadmium (II) ions from water/wastewater. Nano Res. 12, 1489–1507 (2019). https://doi.org/10.1007/s12274-019-2309-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2309-8

Keywords

Navigation