Skip to main content
Log in

Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) possesses excellent mechanical strength, biocompatibility, colloidal stability, large surface area and high adsorption capability. It has driven to cancer nanotechnology to defeat cancer therapy obstacles, via integration into three-dimensional (3D) hydrogel network with biocompatible polymers as nanocomposites carrier, and controllable release of anticancer drugs. Specifically, the surface of GO affords π-π stacking and hydrophilic interactions with anticancer drugs. Additionally, modification of GO with various polymers such as natural and synthetic polymers enhances its biodegradability, drug loading, and target delivery. In this review, GO based hydrogels research accomplishments are reviewed on the aspects of crosslinking strategies, preparation methods, the model drug, polymer conjugation and modification with targeting ligands. Moreover, swelling kinetics, drug release profile and biological activity in vivo and in vitro are discussed. The biocompatibility of GO based hydrogels is also discussed from the perspective of its nano-bio interfaces. Apart from that, the clinical potential of GO based hydrogels and its major challenges are addressed in detail. Finally, this review concludes with a summary and invigorating future perspectives of GO based hydrogels for anticancer drug delivery. It is anticipated that this review can stimulate a new research gateway to facilitate the development of anticancer drug delivery by harnessing the unique properties of GO based hydrogels, such as large surface area, chemical purity, high loading capacity of drug, chemical stability, and the nature of lipophilic for cell membrane penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Santra, S.; Malhotra, A. Fluorescent nanoparticle probes for imaging of cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 501–510.

    Google Scholar 

  2. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D. M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386.

    Google Scholar 

  3. Potash, J.; Anderson, K. C. AACR cancer progress report 2014: Transforming lives through research. Clin. Cancer Res. 2014, 20, 4977.

    Google Scholar 

  4. Wang, X.; Yang, L.; Chen, Z. G.; Shin, D. M. Application of nanotechnology in cancer therapy and imaging. CA-Cancer J. Clin. 2008, 58, 97–110.

    Google Scholar 

  5. Ruenraroengsak, P.; Cook, J. M.; Florence, A. T. Nanosystem drug targeting: Facing up to complex realities. J. Control. Release 2010, 141, 265–276.

    Google Scholar 

  6. Nichols, J. W.; Bae, Y. H. Odyssey of a cancer nanoparticle: From injection site to site of action. Nano Today 2012, 7, 606–618.

    Google Scholar 

  7. Yezhelyev, M. V.; Gao, X. H.; Xing, Y.; Al-Hajj, A.; Nie, S. M.; O’Regan, R. M. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006, 7, 657–667.

    Google Scholar 

  8. Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 2008, 26, 57–64.

    Google Scholar 

  9. LaVan, D. A.; McGuire, T.; Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 2003, 21, 1184–1191.

    Google Scholar 

  10. Liu, M. J.; Kono, K.; Fréchet, J. M. Water-soluble dendritic unimolecular micelles: Their potential as drug delivery agents. J. Control. Release 2000, 65, 121–131.

    Google Scholar 

  11. Kim, C. S.; Duncan, B.; Creran, B.; Rotello, V. M. Triggered nanoparticles as therapeutics. Nano Today 2013, 8, 439–447.

    Google Scholar 

  12. Ge, Z. S.; Liu, S. Y. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev. 2013, 42, 7289–7325.

    Google Scholar 

  13. Issels, R. D. Hyperthermia adds to chemotherapy. Eur. J. Cancer 2008, 44, 2546–2554.

    Google Scholar 

  14. De La Rica, R.; Aili, D.; Stevens, M. M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev. 2012, 64, 967–978.

    Google Scholar 

  15. Gerweck, L. E.; Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res. 1996, 56, 1194–1198.

    Google Scholar 

  16. Deng, C.; Jiang, Y. J.; Cheng, R.; Meng, F. H.; Zhong, Z. Y. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today 2012, 7, 467–480.

    Google Scholar 

  17. Lee, E. S.; Oh, K. T.; Kim, D.; Youn, Y. S.; Bae, Y. H. Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(Lhistidine). J. Control. Release 2007, 123, 19–26.

    Google Scholar 

  18. Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1638–1649.

    Google Scholar 

  19. Min, K. H.; Park, K.; Kim, Y.-S.; Bae, S. M.; Lee, S.; Jo, H. G.; Park, R.-W.; Kim, I.-S.; Jeong, S. Y.; Kim, K. et al. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J. Control. Release 2008, 127, 208–218.

    Google Scholar 

  20. Vinogradov, S. V.; Bronich, T. K.; Kabanov, A. V. Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells. Adv. Drug Deliv. Rev. 2002, 54, 135–147.

    Google Scholar 

  21. Nahar, M.; Dutta, T.; Murugesan, S.; Asthana, A.; Mishra, D.; Rajkumar, V.; Tare, M.; Saraf, S.; Jain, N. K. Functional polymeric nanoparticles: An efficient and promising tool for active delivery of bioactives. Crit. Rev. Ther. Drug Carrier Syst. 2006, 23, 259–318.

    Google Scholar 

  22. Moghimi, S. M.; Hunter, A. C.; Murray, J. C. Long-circulating and targetspecific nanoparticles: Theory to practice. Pharmacol. Rev. 2001, 53, 283–318.

    Google Scholar 

  23. Peppas, N. A.; Mikos, A. G. Preparation methods and structure of hydrogels. In Hydrogels in Medicine and Pharmacy. Peppas, N., Ed.; CRC Press: Boca Raton, FL, 1986; pp 1–27.

    Google Scholar 

  24. Brannon-Peppas, L. Preparation and characterization of crosslinked hydrophilic networks. In Adsorbent Polymer Technology. Brannon-Peppas, L.; Harland, R. S., Eds.; Elsevier: Amsterdam, 1990; pp 45–66.

    Google Scholar 

  25. Peppas, N. A.; Khare, A. R. Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv. Drug Deliv. Rev. 1993, 11, 1–35.

    Google Scholar 

  26. Hacker, M.; Mikos, A. Synthetic polymers. In Principles of Regenerative Medicine. Atala, A.; Lanza, R.; Thomson, J. A.; Nerem, R. M., Eds.; Academic press; San Diego, 2011; pp 587–622.

    Google Scholar 

  27. Das, N. Preparation methods and properties of hydrogel: A review. Int. J. Pharm. Pharm. Sci. 2013, 5, 112–117.

    Google Scholar 

  28. Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 2014, 173, 75–88.

    Google Scholar 

  29. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Google Scholar 

  30. Ali, G. A. M.; Makhlouf, S. A.; Yusoff, M. M.; Chong, K. F. Structural and electrochemical characteristics of graphene nanosheets as supercapacitor electrodes. Rev. Adv. Mater. Sci. 2015, 41, 35–43.

    Google Scholar 

  31. Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

    Google Scholar 

  32. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Google Scholar 

  33. Wang, Y.; Li, Z. H.; Wang, J.; Li, J. H.; Lin, Y. H. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011, 29, 205–212.

    Google Scholar 

  34. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

    Google Scholar 

  35. Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X. S.; Zhang, C. L.; Zhou, X. J.; Guo, S. W.; Cui, D. X. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics 2011, 1, 240–250.

    Google Scholar 

  36. Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114.

    Google Scholar 

  37. Zhang, J. L.; Zhang, F.; Yang, H. J.; Huang, X. L.; Liu, H.; Zhang, J. Y.; Guo, S. W. Graphene oxide as a matrix for enzyme immobilization. Langmuir 2010, 26, 6083–6085.

    Google Scholar 

  38. Haubner, K.; Murawski, J.; Olk, P.; Eng, L. M.; Ziegler, C.; Adolphi, B.; Jaehne, E. The route to functional graphene oxide. ChemPhysChem 2010, 11, 2131–2139.

    Google Scholar 

  39. Nurunnabi, M.; Parvez, K.; Nafiujjaman, M.; Revuri, V.; Khan, H. A.; Feng, X. L.; Lee, Y.-K. Bioapplication of graphene oxide derivatives: Drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv. 2015, 5, 42141–42161.

    Google Scholar 

  40. Yang, K.; Wan, J.; Zhang, S.; Zhang, Y.; Lee, S.-T.; Liu, Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 2011, 5, 516–522.

    Google Scholar 

  41. Wang, C. Y.; Wang, X. Q.; Lu, T.; Liu, F. S.; Guo, B. F.; Wen, N. Y.; Du, Y. W.; Lin, H.; Tang, J.; Zhang, L. Multi-functionalized graphene oxide complex as a plasmid delivery system for targeting hepatocellular carcinoma therapy. RSC Adv. 2016, 6, 22461–22468.

    Google Scholar 

  42. Li, H.; Luo, R. M.; Lam, K. Y. Modeling of environmentally sensitive hydrogels for drug delivery: An overview and recent developments. Front. Drug Des. Discov. 2006, 2, 295–331.

    Google Scholar 

  43. Ahmed, E. M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121.

    Google Scholar 

  44. Cha, C.; Shin, S. R.; Gao, X. G.; Annabi, N.; Dokmeci, M. R.; Tang, X. S.; Khademhosseini, A. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small 2014, 10, 514–523.

    Google Scholar 

  45. Holloway, J. L.; Ma, H.; Rai, R.; Burdick, J. A. Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J. Control. Release 2014, 191, 63–70.

    Google Scholar 

  46. Lee, S. C.; Kwon, I. K.; Park, K. Hydrogels for delivery of bioactive agents: A historical perspective. Adv. Drug Deliv. Rev. 2013, 65, 17–20.

    Google Scholar 

  47. Wichterle, O.; Lím, D. Hydrophilic gels for biological use. Nature 1960, 185, 117–118.

    Google Scholar 

  48. Buwalda, S. J.; Boere, K. W. M.; Dijkstra, P. J.; Feijen, J.; Vermonden, T.; Hennink, W. E. Hydrogels in a historical perspective: From simple networks to smart materials. J. Control. Release 2014, 190, 254–273.

    Google Scholar 

  49. Sharma, K.; Kumar, V.; Kaith, B. S.; Kalia, S.; Swart, H. C. Conducting polymer hydrogels and their applications. In Conducting Polymer Hybrids. Kumar; V.; Kalia, S.; Swart, H. C., Eds.; Springer: Switzerland, 2017; pp 193–221.

    Google Scholar 

  50. Haque, M. A.; Kurokawa, T.; Gong, J. P. Super tough double network hydrogels and their application as biomaterials. Polymer 2012, 53, 1805–1822.

    Google Scholar 

  51. Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C 2017, 79, 958–971.

    Google Scholar 

  52. Akhtar, M. F.; Hanif, M.; Ranjha, N. M. Methods of synthesis of hydrogels… A review. Saudi Pharm. J. 2016, 24, 554–559.

    Google Scholar 

  53. Zu, Y. G.; Zhang, Y.; Zhao, X. H.; Shan, C.; Zu, S. C.; Wang, K. L.; Li, Y.; Ge, Y. L. Preparation and characterization of chitosan–polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int. J. Biol. Macromol. 2012, 50, 82–87.

    Google Scholar 

  54. Lugao, A. B.; Malmonge, S. M. Use of radiation in the production of hydrogels. Nucl. Instrum. Meth. Phys. Res. B 2001, 185, 37–42.

    Google Scholar 

  55. Sperinde, J. J.; Griffith, L. G. Synthesis and characterization of enzymaticallycross-linked poly(ethylene glycol) hydrogels. Macromolecules 1997, 30, 5255–5264.

    Google Scholar 

  56. Ullah, F.; Othman, M. B. H.; Javed, F.; Ahmad, Z.; Akil, H. M. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C 2015, 57, 414–433.

    Google Scholar 

  57. Daoud Attieh, M.; Zhao, Y.; Elkak, A.; Falcimaigne-Cordin, A.; Haupt, K. Enzyme-initiated free-radical polymerization of molecularly imprinted polymer nanogels on a solid phase with an immobilized radical source. Angew. Chem., Int. Ed. 2017, 56, 3339–3343.

    Google Scholar 

  58. Chen, Q.; Zhu, L.; Zhao, C.; Wang, Q. M.; Zheng, J. A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv. Mater. 2013, 25, 4171–4176.

    Google Scholar 

  59. Zhang, L.; Zheng, G.-J.; Guo, Y.-T.; Zhou, L.; Du, J.; He, H. Preparation of novel biodegradable pHEMA hydrogel for a tissue engineering scaffold by microwave-assisted polymerization. Asian Pac. J. Trop. Med. 2014, 7, 136–140.

    Google Scholar 

  60. Atzet, S.; Curtin, S.; Trinh, P.; Bryant, S.; Ratner, B. Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds. Biomacromolecules 2008, 9, 3370–3377.

    Google Scholar 

  61. Sharma, R.; Kalia, S.; Kaith, B. S.; Kumar, A.; Thakur, P.; Pathania, D.; Srivastava, M. K. Ggum-poly(itaconic acid) based superabsorbents via two-step free-radical aqueous polymerization for environmental and antibacterial applications. J. Polym. Environ. 2017, 25, 176–191.

    Google Scholar 

  62. Sarika, P. R.; Cinthya, K.; Jayakrishnan, A.; Anilkumar, P. R.; James, N. R. Modified gum arabic cross-linked gelatin scaffold for biomedical applications. Mater. Sci. Eng. C 2014, 43, 272–279.

    Google Scholar 

  63. Coviello, T.; Grassi, M.; Rambone, G.; Santucci, E.; Carafa, M.; Murtas, E.; Riccieri, F. M.; Alhaique, F. Novel hydrogel system from scleroglucan: Synthesis and characterization. J. Control. Release 1999, 60, 367–378.

    Google Scholar 

  64. Chung, T.-W.; Chou, T.-H.; Wu, K.-Y. Gelatin/PLGA hydrogel films and their delivery of hydrophobic drugs. J. Taiwan Inst. Chem. E. 2016, 60, 8–14.

    Google Scholar 

  65. Chen, Y.-Y.; Wu, H.-C.; Sun, J.-S.; Dong, G.-C.; Wang, T.-W. Injectable and thermoresponsive self-assembled nanocomposite hydrogel for long-term anticancer drug delivery. Langmuir 2013, 29, 3721–3729.

    Google Scholar 

  66. Yoshimura, T.; Hirao, N.; Fujioka, R. Preparation and characterization of biodegradable hydrogels based on ulvan, a polysaccharide from green seaweeds. Polym. Renew. Resour. 2016, 7, 33–41.

    Google Scholar 

  67. Riahi, N.; Liberelle, B.; Henry, O.; De Crescenzo, G. Impact of RGD amount in dextran-based hydrogels for cell delivery. Carbohyd. Polym. 2017, 161, 219–227.

    Google Scholar 

  68. Noteborn, W. E. M.; Gao, Y.; Jesse, W.; Kros, A.; Kieltyka, R. E. Dualcrosslinked human serum albumin-polymer hydrogels for affinity-based drug delivery. Macromol. Mater. Eng. 2017, 302, 1700243.

    Google Scholar 

  69. Kuijpers, A. J.; Van Wachem, P. B.; Van Luyn, M. J.; Engbers, G. H. M.; Krijgsveld, J.; Zaat, S. A. J.; Dankert, J.; Feijen, J. In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: A model system for the delivery of antibacterial proteins from prosthetic heart valves. J. Control. Release 2000, 67, 323–336.

    Google Scholar 

  70. Omobono, M. A.; Zhao, X.; Furlong, M. A.; Kwon, C. H.; Gill, T. J.; Randolph, M. A.; Redmond, R. W. Enhancing the stiffness of collagen hydrogels for delivery of encapsulated chondrocytes to articular lesions for cartilage regeneration. J. Biomed. Mater. Res. A 2015, 103, 1332–1338.

    Google Scholar 

  71. Ghorpade, V. S.; Yadav, A. V.; Dias, R. J. Citric acid crosslinked cyclodextrin/hydroxypropylmethylcellulose hydrogel films for hydrophobic drug delivery. Int. J. Biol. Macromol. 2016, 93, 75–86.

    Google Scholar 

  72. Seki, Y.; Altinisik, A.; Demircioglu, B.; Tetik, C. Carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC) based hydrogels: Synthesis and characterization. Cellulose 2014, 21, 1689–1698.

    Google Scholar 

  73. Gupta, A. P.; Arora, G. Preparation and characterization of guar-gum/ polyvinylalcohol blend films. J. Mater. Sci. Eng. B 2011, 1, 28–33.

    Google Scholar 

  74. Rudick, J. G. Innovative macromolecular syntheses via isocyanide multicomponent reactions. J. Polym. Sci. A: Polym. Chem. 2013, 51, 3985–3991.

    Google Scholar 

  75. De Nooy, A. E.; Capitani, D.; Masci, G.; Crescenzi, V. Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: Synthesis, behavior and solid-state NMR characterization. Biomacromolecules 2000, 1, 259–267.

    Google Scholar 

  76. El-Gendy, A. A.; Abou-Yousef, H.; Adel, A.; El-Shinnawy, N. Bio-based hydrogel formed by gamma irradiation. Egypt. J. Chem. 2016, 59, 647–662.

    Google Scholar 

  77. Tohfafarosh, M.; Baykal, D.; Kiel, J. W.; Mansmann, K.; Kurtz, S. M. Effects of gamma and e-beam sterilization on the chemical, mechanical and tribological properties of a novel hydrogel. J. Mech. Behav. Biomed. Mater. 2016, 53, 250–256.

    Google Scholar 

  78. Wach, R. A.; Rokita, B.; Bartoszek, N.; Katsumura, Y.; Ulanski, P.; Rosiak, J. M. Hydroxyl radical-induced crosslinking and radiation-initiated hydrogel formation in dilute aqueous solutions of carboxymethylcellulose. Carbohyd. Polym. 2014, 112, 412–415.

    Google Scholar 

  79. Fekete, T.; Borsa, J.; Takács, E.; Wojnárovits, L. Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking. Cellulose 2014, 21, 4157–4165.

    Google Scholar 

  80. Park, J.-S.; Kuang, J.; Gwon, H.-J.; Lim, Y.-M.; Jeong, S.-I.; Shin, Y.-M.; Khil, M. S.; Nho, Y.-C. Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation. Radiat. Phys. Chem. 2013, 88, 60–64.

    Google Scholar 

  81. Yamdej, R.; Pangza, K.; Srichana, T.; Aramwit, P. Superior physicochemical and biological properties of poly(vinyl alcohol)/sericin hydrogels fabricated by a non-toxic gamma-irradiation technique. J. Bioact. Compat. Polym. 2017, 32, 32–44.

    Google Scholar 

  82. Banaei, M.; Dehshiri, S.; Shirmardi, S. P. Physical Swelling Properties study of a PVP hydrogel in aqueous solutions by using electron beam (EB) irradiation. J. Nucl. Ene. Sci. Power Generat. Technol. 2016, 5, DOI: 10.4172/2325-9809.1000147.

    Google Scholar 

  83. Fekete, T.; Borsa, J.; Takács, E.; Wojnárovits, L. Synthesis of carboxymethylcellulose/starch superabsorbent hydrogels by gamma-irradiation. Chem. Cent. J. 2017, 11, 46.

    Google Scholar 

  84. Elbarbary, A. M.; Ghobashy, M. M. Phosphorylation of chitosan/HEMA interpenetrating polymer network prepared by ?-radiation for metal ions removal from aqueous solutions. Carbohyd. Polym. 2017, 162, 16–27.

    Google Scholar 

  85. Sperinde, J. J.; Griffith, L. G. Control and prediction of gelation kinetics in enzymatically cross-linked poly(ethylene glycol) hydrogels. Macromolecules 2000, 33, 5476–5480.

    Google Scholar 

  86. Arora, A.; Mahajan, A.; Katti, D. S. TGF-ß1 presenting enzymatically cross-linked injectable hydrogels for improved chondrogenesis. Colloids Surf. B: Biointerfaces 2017, 159, 838–848.

    Google Scholar 

  87. Broguiere, N.; Isenmann, L.; Zenobi-Wong, M. Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks. Biomaterials 2016, 99, 47–55.

    Google Scholar 

  88. Wu, C. Z.; Strehmel, C.; Achazi, K.; Chiappisi, L.; Dernedde, J.; Lensen, M. C.; Gradzielski, M.; Ansorge-Schumacher, M. B.; Haag, R. Enzymatically cross-linked hyperbranched polyglycerol hydrogels as scaffolds for living cells. Biomacromolecules 2014, 15, 3881–3890.

    Google Scholar 

  89. Da Silva, M. A.; Bode, F.; Grillo, I.; Dreiss, C. A. Exploring the kinetics of gelation and final architecture of enzymatically cross-linked chitosan/gelatin gels. Biomacromolecules 2015, 16, 1401–1409.

    Google Scholar 

  90. Le Thi, P.; Lee, Y.; Nguyen, D. H.; Park, K. D. In situ forming gelatin hydrogels by dual-enzymatic cross-linking for enhanced tissue adhesiveness. J. Mater. Chem. B 2017, 5, 757–764.

    Google Scholar 

  91. Gulrez, S. K. H.; Al-Assaf, S.; Phillips, G. O. Hydrogels: Methods of preparation, characterisation and applications. In Progress in Molecular and Environmental Bioengineering. Carpi, A., Ed.; InTech: UK, 2011; pp 117–150.

    Google Scholar 

  92. Gyles, D. A.; Castro, L. D.; Silva, J. O. C., Jr.; Ribeiro-Costa, R. M. A review of the designs and Prominent Biomedical Advances of Natural and Synthetic Hydrogel Formulations. Eur. Polym. J. 2017, 88, 373–392.

    Google Scholar 

  93. Agrawal, G.; Pich, A. Polymer gels as EAPs: Materials. In Electromechanically Active Polymers. Carpi, F., Ed.; Springer International Publishing: Switzerland, 2016; pp 1–27.

    Google Scholar 

  94. Hennink, W. E.; Van Nostrum, C. F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 223–236.

    Google Scholar 

  95. Yang, C. H.; Wang, M. X.; Haider, H.; Yang, J. H.; Sun, J.-Y.; Chen, Y. M.; Zhou, J. X.; Suo, Z. G. Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl. Mater. Interfaces 2013, 5, 10418–10422.

    Google Scholar 

  96. Girgin, B.; Korkmaz, O.; Yavaser, R.; Karagözler, A. A. Production and drug release assesment of melatonin-loaded alginate/gum arabic beads. J. Turkish Chem. Soc. Sect. A: Chem. 2016, 3, 205–216.

    Google Scholar 

  97. Rezvanain, M.; Ahmad, N.; Amin, M. C. I. M.; Ng, S.-F. Optimization, characterization, and in vitro assessment of alginate-pectin ionic crosslinked hydrogel film for wound dressing applications. Int. J. Biol. Macromol. 2017, 97, 131–140.

    Google Scholar 

  98. Li, G.; Zhang, G. P.; Sun, R.; Wong, C.-P. Mechanical strengthened alginate/ polyacrylamide hydrogel crosslinked by barium and ferric dual ions. J. Mater. Sci. 2017, 52, 8538–8545.

    Google Scholar 

  99. Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 2000, 407, 167–170.

    Google Scholar 

  100. Li, G.; Yan, Q.; Xia, H. S.; Zhao, Y. Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel. ACS Appl. Mater. Interfaces 2015, 7, 12067–12073.

    Google Scholar 

  101. Shi, S. J.; Peng, X.; Liu, T. Q.; Chen, Y.-N.; He, C. C.; Wang, H. L. Facile preparation of hydrogen-bonded supramolecular polyvinyl alcoholglycerol gels with excellent thermoplasticity and mechanical properties. Polymer 2017, 111, 168–176.

    Google Scholar 

  102. Li, G.; Zhang, H. J.; Fortin, D.; Xia, H. S.; Zhao, Y. Poly (vinyl alcohol)–Poly(ethylene glycol) double-network hydrogel: A general approach to shape memory and self-healing functionalities. Langmuir 2015, 31, 11709–11716.

    Google Scholar 

  103. Li, J. F.; Wang, Z. L.; Wen, L. G.; Nie, J.; Yang, S. G.; Xu, J.; Cheng, S. Z. D. Highly elastic fibers made from hydrogen-bonded polymer complex. ACS Macro Lett. 2016, 5, 814–818.

    Google Scholar 

  104. Dai, X. Y.; Zhang, Y. Y.; Gao, L.; Bai, T.; Wang, W.; Cui, Y. L.; Liu, W. G. A Mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel. Adv. Mater. 2015, 27, 3566–3571.

    Google Scholar 

  105. Hassan, C. M.; Peppas, N. A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites. Advances in Polymer Science. Springer: Berlin, 2000; pp 37–65.

    Google Scholar 

  106. Förster, S.; Antonietti, M. Amphiphilic block copolymers in structurecontrolled nanomaterial hybrids. Adv. Mater. 1998, 10, 195–217.

    Google Scholar 

  107. Lee, D. S.; Jeong, B.; Bae, Y. H.; Kim, S. W. New thermoreversible and biodegradable block copolymer hydrogels. Proc. Control. Release Soc. 1996, (23), 228–229.

    Google Scholar 

  108. Jeong, B.; Bae, Y. H.; Kim, S. W. Thermoreversible gelation of PEGPLGA-PEG triblock copolymer aqueous solutions. Macromolecules 1999, 32, 7064–7069.

    Google Scholar 

  109. Buwalda, S. J.; Nottelet, B.; Coudane, J. Robust & thermosensitive poly(ethylene glycol)-poly(ε-caprolactone) star block copolymer hydrogels. Polym. Degrad. Stabil. 2017, 137, 173–183.

    Google Scholar 

  110. Hom, W. L.; Bhatia, S. R. Significant enhancement of elasticity in alginate-clay nanocomposite hydrogels with PEO-PPO-PEO copolymers. Polymer 2017, 109, 170–175.

    Google Scholar 

  111. Cappello, J.; Crissman, J.; Dorman, M.; Mikolajczak, M.; Textor, G.; Marquet, M.; Ferrari, F. Genetic engineering of structural protein polymers. Biotechnol. Progr. 1990, 6, 198–202.

    Google Scholar 

  112. McGrath, K. P.; Fournier, M. J.; Mason, T. L.; Tirrell, D. A. Genetically directed syntheses of new polymeric materials. Expression of artificial genes encoding proteins with repeating-(AlaGly) 3ProGluGly-elements. J. Am. Chem. Soc. 1992, 114, 727–733.

    Google Scholar 

  113. Vagias, A.; Sergelen, K.; Koynov, K.; Košovan, P.; Dostalek, J.; Jonas, U.; Knoll, W.; Fytas, G. Diffusion and permeation of labeled IgG in grafted hydrogels. Macromolecules 2017, 50, 4770–4779.

    Google Scholar 

  114. Li, H. B.; Kong, N.; Laver, B.; Liu, J. Q. Hydrogels constructed from engineered proteins. Small 2016, 12, 973–987.

    Google Scholar 

  115. Yang, W. Z.; Wang, M. M.; Ma, L. L.; Li, H. Y.; Huang, L. Synthesis and characterization of biotin modified cholesteryl pullulan as a novel anticancer drug carrier. Carbohyd. Polym. 2014, 99, 720–727.

    Google Scholar 

  116. Xin, C.; Chen, J.; Liang, H. S.; Wan, J. W.; Li, J.; Li, B. Confirmation and measurement of hydrophobic interaction in sol-gel system of konjac glucomannan with different degree of deacetylation. Carbohyd. Polym. 2017, 174, 337–342.

    Google Scholar 

  117. Becerra, J.; Sudre, G.; Royaud, I.; Montserret, R.; Verrier, B.; Rochas, C.; Delair, T.; David, L. Tuning the hydrophilic/hydrophobic balance to control the structure of chitosan films and their protein release behavior. AAPS PharmSciTech 2017, 18, 1070–1083.

    Google Scholar 

  118. Bai, H.; Li, C.; Shi, G. Q. Functional composite materials based on chemically converted graphene. Adv. Mater. 2011, 23, 1089–1115.

    Google Scholar 

  119. Schniepp, H. C.; Li, J.-L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.

    Google Scholar 

  120. Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Google Scholar 

  121. Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482.

    Google Scholar 

  122. Nasrollahzadeh, M.; Babaei, F.; Fakhri, P.; Jaleh, B. Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites. RSC Adv. 2015, 5, 10782–10789.

    Google Scholar 

  123. Zhang, Q.; Wu, Z. N.; Li, N.; Pu, Y. Q.; Wang, B.; Zhang, T.; Tao, J. S. Advanced review of graphene-based nanomaterials in drug delivery systems: Synthesis, modification, toxicity and application. Mater. Sci. Eng. C 2017, 77, 1363–1375.

    Google Scholar 

  124. Travlou, N. A.; Kyzas, G. Z.; Lazaridis, N. K.; Deliyanni, E. A. Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir 2013, 29, 1657–1668.

    Google Scholar 

  125. Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

    Google Scholar 

  126. Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

    Google Scholar 

  127. Chen, L.; Zhong, X. Y.; Yi, X.; Huang, M.; Ning, P.; Liu, T.; Ge, C. C.; Chai, Z. F.; Liu, Z.; Yang, K. Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials 2015, 66, 21–28.

    Google Scholar 

  128. Jiang, B.; Qu, Y. Y.; Zhang, L. H.; Liang, Z.; Zhang, Y. K. 4-Mercaptophenylboronic acid functionalized graphene oxide composites: Preparation, characterization and selective enrichment of glycopeptides. Anal. Chim. Acta 2016, 912, 41–48.

    Google Scholar 

  129. Hu, H. Q.; Yu, J. H.; Li, Y. Y.; Zhao, J.; Dong, H. Q. Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. J. Biomed. Mater. Res. A 2012, 100, 141–148.

    Google Scholar 

  130. Liu, S. L.; Ling, J.; Li, K. W.; Yao, F.; Oderinde, O.; Zhang, Z. H.; Fu, G. D. Bio-inspired and lanthanide-induced hierarchical sodium alginate/graphene oxide composite paper with enhanced physicochemical properties. Compos. Sci. Technol. 2017, 145, 62–70.

    Google Scholar 

  131. Peng, X.; He, C. C.; Liu, J. Q.; Wang, H. L. Biomimetic jellyfish-like PVA/graphene oxide nanocomposite hydrogels with anisotropic and pH-responsive mechanical properties. J. Mater. Sci. 2016, 51, 5901–5911.

    Google Scholar 

  132. Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 2006, 16, 155–158.

    Google Scholar 

  133. Yang, Y.; Zhang, Y. M.; Chen, Y.; Zhao, D.; Chen, J. T.; Liu, Y. Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chem.—Eur. J 2012, 18, 4208–4215.

    Google Scholar 

  134. Wang, J.; Chen, Z. M.; Chen, B. L. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ. Sci. Technol. 2014, 48, 4817–4825.

    Google Scholar 

  135. Azadbakht, A.; Roushani, M.; Abbasi, A. R.; Derikvand, Z.; Menati, S. Bifunctional impedimetric sensors based on azodicarboxamide supported on modified graphene nanosheets. Mater. Sci. Eng. C 2016, 69, 221–230.

    Google Scholar 

  136. Yu, Y.; Shu, Y.; Ye, L. In situ crosslinking of poly (vinyl alcohol)/ graphene oxide-glutamic acid nano-composite hydrogel as microbial carrier: Intercalation structure and its wastewater treatment performance. Chem.—Eng. J. 2018, 336, 306–314.

    Google Scholar 

  137. Park, Y. H.; Park, S. Y.; In, I. Direct noncovalent conjugation of folic acid on reduced graphene oxide as anticancer drug carrier. J. Ind. Eng. Chem. 2015, 30, 190–196.

    Google Scholar 

  138. Hu, X. G.; Zhou, Q. X. Health and ecosystem risks of graphene. Chem. Rev. 2013, 113, 3815–3835.

    Google Scholar 

  139. Seabra, A. B.; Paula, A. J.; de Lima, R.; Alves, O. L.; Durán, N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 2014, 27, 159–168.

    Google Scholar 

  140. Zhao, J.; Wang, Z. Y.; White, J. C.; Xing, B. S. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 2014, 48, 9995–10009.

    Google Scholar 

  141. Tonelli, F. M.; Goulart, V. A.; Gomes, K. N.; Ladeira, M. S.; Santos, A. K.; Lorençon, E.; Ladeira, L. O.; Resende, R. R. Graphene-based nanomaterials: Biological and medical applications and toxicity. Nanomedicine 2015, 10, 2423–2450.

    Google Scholar 

  142. Bitounis, D.; Ali-Boucetta, H.; Hong, B. H.; Min, D. H.; Kostarelos, K. Prospects and challenges of graphene in biomedical applications. Adv. Mater. 2013, 25, 2258–2268.

    Google Scholar 

  143. Bianco, A. Graphene: Safe or toxic? The two faces of the medal. Angew. Chem., Int. Ed. 2013, 52, 4986–4997.

    Google Scholar 

  144. Yang, K.; Li, Y. J.; Tan, X. F.; Peng, R.; Liu, Z. Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 2013, 9, 1492–1503.

    Google Scholar 

  145. Sanchez, V. C.; Jachak, A.; Hurt, R. H.; Kane, A. B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chem. Res. Toxicol. 2012, 25, 15–34.

    Google Scholar 

  146. Jastrzebska, A. M.; Kurtycz, P.; Olszyna, A. R. Recent advances in graphene family materials toxicity investigations. J. Nanopart. Res. 2012, 14, 1320.

    Google Scholar 

  147. Zhang, B. M.; Wang, Y.; Zhai, G. X. Biomedical applications of the graphene-based materials. Mater. Sci. Eng. C 2016, 61, 953–964.

    Google Scholar 

  148. Wong, C. H. A.; Sofer, Z.; Kubešová, M.; Kucera, J.; Matejková, S.; Pumera, M. Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements. Proc. Natl. Acad. Sci. USA 2014, 111, 13774–13779.

    Google Scholar 

  149. Ambrosi, A.; Chua, C. K.; Khezri, B.; Sofer, Z.; Webster, R. D.; Pumera, M. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite. Proc. Natl. Acad. Sci. USA 2012, 109, 12899–12904.

    Google Scholar 

  150. Mullick Chowdhury, S.; Dasgupta, S.; McElroy, A. E.; Sitharaman, B. Structural disruption increases toxicity of graphene nanoribbons. J. Appl. Toxicol. 2014, 34, 1235–1246.

    Google Scholar 

  151. Zhang, Y. B.; Ali, S. F.; Dervishi, E.; Xu, Y.; Li, Z. R.; Casciano, D.; Biris, A. S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 2010, 4, 3181–3186.

    Google Scholar 

  152. Vallabani, N. V.; Mittal, S.; Shukla, R. K.; Pandey, A. K.; Dhakate, S. R.; Pasricha, R.; Dhawan, A. Toxicity of graphene in normal human lung cells (BEAS-2B). J. Biomed. Nanotechnol. 2011, 7, 106–107.

    Google Scholar 

  153. Sasidharan, A.; Panchakarla, L. S.; Chandran, P.; Menon, D.; Nair, S.; Rao, C. N. R.; Koyakutty, M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 2011, 3, 2461–2464.

    Google Scholar 

  154. Horváth, L.; Magrez, A.; Burghard, M.; Kern, K.; Forró, L.; Schwaller, B. Evaluation of the toxicity of graphene derivatives on cells of the lung luminal surface. Carbon 2013, 64, 45–60.

    Google Scholar 

  155. Akhavan, O.; Ghaderi, E.; Akhavan, A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 2012, 33, 8017–8025.

    Google Scholar 

  156. Muthoosamy, K.; Bai, R. G.; Manickam, S. Graphene and graphene oxide as a docking station for modern drug delivery system. Curr. Drug Deliv. 2014, 11, 701–718.

    Google Scholar 

  157. Yang, K.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2013, 42, 530–547.

    Google Scholar 

  158. Yang, X. Y.; Zhang, X. Y.; Liu, Z. F.; Ma, Y. F.; Huang, Y.; Chen, Y. S. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C 2008, 112, 17554–17558.

    Google Scholar 

  159. Ni, Y. N.; Zhang, F. Y.; Kokot, S. Graphene oxide as a nanocarrier for loading and delivery of medicinal drugs and as a biosensor for detection of serum albumin. Anal. Chim. Acta 2013, 769, 40–48.

    Google Scholar 

  160. Wang, Z. H.; Gao, Y. L.; Xia, J. F.; Zhang, F. F.; Xia, Y. Z.; Li, Y. H. Synthesis and characterization of glycyrrhizin-decorated graphene oxide for hepatocyte-targeted delivery. C. R. Chim. 2012, 15, 708–713.

    Google Scholar 

  161. Zhang, Q.; Li, W. W.; Kong, T.; Su, R. G.; Li, N.; Song, Q.; Tang, M. L.; Liu, L. W.; Cheng, G. S. Tailoring the interlayer interaction between doxorubicin-loaded graphene oxide nanosheets by controlling the drug content. Carbon 2013, 51, 164–172.

    Google Scholar 

  162. Ma, D.; Lin, J. T.; Chen, Y. Y.; Xue, W.; Zhang, L.-M. In situ gelation and sustained release of an antitumor drug by graphene oxide nanosheets. Carbon 2012, 50, 3001–3007.

    Google Scholar 

  163. Zhou, L.; Zhou, L.; Wei, S. H.; Ge, X. F.; Zhou, J. H.; Jiang, H. J.; Li, F. Y.; Shen, J. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. J. Photochem. Photobiol. B 2014, 135, 7–16.

    Google Scholar 

  164. Zhou, L.; Wang, W.; Tang, J.; Zhou, J. H.; Jiang, H. J.; Shen, J. Graphene oxide noncovalent photosensitizer and its anticancer activity in vitro. Chem.—Eur. J. 2011, 17, 12084–12091.

    Google Scholar 

  165. Hasanzade, Z.; Raissi, H. Solvent/co-solvent effects on the electronic properties and adsorption mechanism of anticancer drug thioguanine on graphene oxide surface as a nanocarrier: Density functional theory investigation and a molecular dynamics. Appl. Surf. Sci. 2017, 422, 1030–1041.

    Google Scholar 

  166. Bardajee, G. R.; Hooshyar, Z. Drug release study by a novel thermo sensitive nanogel based on salep modified graphene oxide. J. Polym. Res. 2017, 24, 49.

    Google Scholar 

  167. Chen, P.; Wang, X.; Wang, G.; Duo, Y. R.; Zhang, X. Y.; Hu, X. H.; Zhang, X. J. Double network self-healing graphene hydrogel by two step method for anticancer drug delivery. Mater. Technol. 2014, 29, 210–213.

    Google Scholar 

  168. Zhang, H. J.; Zhai, D. D.; He, Y. Graphene oxide/polyacrylamide/ carboxymethyl cellulose sodium nanocomposite hydrogel with enhanced mechanical strength: Preparation, characterization and the swelling behavior. RSC Adv. 2014, 4, 44600–44609.

    Google Scholar 

  169. Kavitha, T.; Kang, I.-K.; Park, S.-Y. Poly(N-vinyl caprolactam) grown on nanographene oxide as an effective nanocargo for drug delivery. Colloids Surf. B: Biointerfaces 2014, 115, 37–45.

    Google Scholar 

  170. Kundu, A.; Nandi, S.; Das, P.; Nandi, A. K. Fluorescent graphene oxide via polymer grafting: An efficient nanocarrier for both hydrophilic and hydrophobic drugs. ACS Appl. Mater. Interfaces 2015, 7, 3512–3523.

    Google Scholar 

  171. Pourjavadi, A.; Shakerpoor, A.; Tehrani, Z. M.; Bumajdad, A. Magnetic graphene oxide mesoporous silica hybrid nanoparticles with dendritic pH sensitive moieties coated by PEGylated alginate-co-poly (acrylic acid) for targeted and controlled drug delivery purposes. J. Polym. Res. 2015, 22, 156.

    Google Scholar 

  172. Mahkam, M.; Rafi, A. A.; Faraji, L.; Zakerzadeh, E. Preparation of poly (methacrylic acid)–graphene oxide nanocomposite as a pH-sensitive drug carrier through in-situ copolymerization of methacrylic acid with polymerizable graphene. Polym.-Plast. Technol. Eng. 2015, 54, 916–922.

    Google Scholar 

  173. Zhao, X. B.; Yang, L. W.; Li, X. R.; Jia, X.; Liu, L.; Zeng, J.; Guo, J. S.; Liu, P. Functionalized graphene oxide nanoparticles for cancer cell-specific delivery of antitumor drug. Bioconjugate Chem. 2015, 26, 128–136.

    Google Scholar 

  174. He, C.; Shi, Z.-Q.; Cheng, C.; Nie, C.-X.; Zhou, M.; Wang, L.-R.; Zhao, C.-S. Highly swellable and biocompatible graphene/heparin-analogue hydrogels for implantable drug and protein delivery. RSC Adv. 2016, 6, 71893–71904.

    Google Scholar 

  175. Bardajee, G. R.; Hooshyar, Z.; Farsi, M.; Mobini, A.; Sang, G. Synthesis of a novel thermo/pH sensitive nanogel based on salep modified graphene oxide for drug release. Mater. Sci. Eng. C 2017, 72, 558–565.

    Google Scholar 

  176. Raafat, A. I.; Ali, A. E.-H. pH-controlled drug release of radiation synthesized graphene oxide/(acrylic acid-co-sodium alginate) interpenetrating network. Polym. Bull. 2017, 74, 2045–2062.

    Google Scholar 

  177. Dai, Z. Q.; Lu, Q. F.; Quan, Q. G.; Mo, R. J.; Zhou, C. X.; Hong, P. Z.; Li, C. Y. Novel low temperature (< 37°C) chitosan hydrogel fabrication under the synergistic effect of graphene oxide. New J. Chem. 2017, 41, 671–676.

    Google Scholar 

  178. Dragutan, I.; Dragutan, V.; Demonceau, A. Editorial of special issue ruthenium complex: The expanding chemistry of the ruthenium complexes. Molecules 2015, 20, 17244–17274.

    Google Scholar 

  179. Lee, Y.; Bae, J. W.; Thi, T. T. H.; Park, K. M.; Park, K. D. Injectable and mechanically robust 4-arm PPO–PEO/graphene oxide composite hydrogels for biomedical applications. Chem. Commun. 2015, 51, 8876–8879.

    Google Scholar 

  180. Yang, H. H.; Bremner, D. H.; Tao, L.; Li, H. Y.; Hu, J.; Zhu, L. M. Carboxymethyl chitosan-mediated synthesis of hyaluronic acid-targeted graphene oxide for cancer drug delivery. Carbohyd. Polym. 2016, 135, 72–78.

    Google Scholar 

  181. Xu, Z. Y.; Wang, S.; Li, Y. J.; Wang, M. W.; Shi, P.; Huang, X. Y. Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Appl. Mater. Interfaces 2014, 6, 17268–17276.

    Google Scholar 

  182. Wu, T.; Zhang, B.; Liang, Y. Y.; Liu, T.; Bu, J. Y.; Lin, L. X.; Wu, Z. M.; Liu, H. X.; Wen, S. P.; Tan, S. Z. et al. Heparin-modified graphene oxide loading anti-cancer drug and growth factor with heat stability, long-term release property and lower cytotoxicity. RSC Adv. 2015, 5, 84334–84342.

    Google Scholar 

  183. Gu, Y. M.; Guo, Y. Z.; Wang, C. Y.; Xu, J. K.; Wu, J. P.; Kirk, T. B.; Ma, D.; Xue, W. A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery. Mater. Sci. Eng. C 2017, 70, 572–585.

    Google Scholar 

  184. Chen, H.; Wang, Z. Y.; Zong, S. F.; Wu, L.; Chen, P.; Zhu, D.; Wang, C. L.; Xu, S. H.; Cui, Y. P. SERS-fluorescence monitored drug release of a redox-responsive nanocarrier based on graphene oxide in tumor cells. ACS Appl. Mater. Interfaces 2014, 6, 17526–17533.

    Google Scholar 

  185. Khoee, S.; Bafkary, R.; Fayyazi, F. DOX delivery based on chitosancapped graphene oxide-mesoporous silica nanohybride as pH-responsive nanocarriers. J. Sol-Gel Sci. Technol. 2017, 81, 493–504.

    Google Scholar 

  186. Wu, H. X.; Shi, H. L.; Wang, Y. P.; Jia, X. Q.; Tang, C. Z.; Zhang, J. M.; Yang, S. P. Hyaluronic acid conjugated graphene oxide for targeted drug delivery. Carbon 2014, 69, 379–389.

    Google Scholar 

  187. Zhang, B.; Yan, Y. Y.; Shen, Q. J.; Ma, D.; Huang, L. H.; Cai, X.; Tan, S. Z. A colon targeted drug delivery system based on alginate modificated graphene oxide for colorectal liver metastasis. Mater. Sci. Eng. C 2017, 79, 185–190.

    Google Scholar 

  188. Pan, Q. X.; Lv, Y.; Williams, G. R.; Tao, L.; Yang, H. H.; Li, H. Y.; Zhu, L. M. Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems. Carbohyd. Polym. 2016, 151, 812–820.

    Google Scholar 

  189. Tan, J. T.; Meng, N.; Fan, Y. T.; Su, Y. T.; Zhang, M.; Xiao, Y. H.; Zhou, N. L. Hydroxypropyl-ß-cyclodextrin–graphene oxide conjugates: Carriers for anti-cancer drugs. Mater. Sci. Eng. C 2016, 61, 681–687.

    Google Scholar 

  190. Lei, H. L.; Xie, M.; Zhao, Y. W.; Zhang, F.; Xu, Y. G.; Xie, J. M. Chitosan/sodium alginate modificated graphene oxide-based nanocomposite as a carrier for drug delivery. Ceram. Int. 2016, 42, 17798–17805.

    Google Scholar 

  191. Chen, J. Q.; Liu, H. Y.; Zhao, C. B.; Qin, G. Q.; Xi, G. N.; Li, T.; Wang, X. P.; Chen, T. S. One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery. Biomaterials 2014, 35, 4986–4995.

    Google Scholar 

  192. Hou, L.; Shi, Y. Y.; Jiang, G. X.; Liu, W.; Han, H. L.; Feng, Q. H.; Ren, J. X.; Yuan, Y. J.; Wang, Y. C.; Shi, J. J. et al. Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery. Nanotechnology 2016, 27, 315105.

    Google Scholar 

  193. Liu, J. Q.; Cui, L.; Kong, N.; Barrow, C. J.; Yang, W. R. RAFT controlled synthesis of graphene/polymer hydrogel with enhanced mechanical property for pH-controlled drug release. Eur. Polym. J. 2014, 50, 9–17.

    Google Scholar 

  194. Byun, E.; Lee, H. Enhanced loading efficiency and sustained release of doxorubicin from hyaluronic acid/graphene oxide composite hydrogels by a mussel-inspired catecholamine. J. Nanosci. Nanotechnol. 2014, 14, 7395–7401.

    Google Scholar 

  195. Lv, Y.; Tao, L.; Bligh, S. W. A.; Yang, H. H.; Pan, Q. X.; Zhu, L. M. Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide. Mater. Sci. Eng. C 2016, 59, 652–660.

    Google Scholar 

  196. Angelopoulou, A.; Voulgari, E.; Diamanti, E. K.; Gournis, D.; Avgoustakis, K. Graphene oxide stabilized by PLA–PEG copolymers for the controlled delivery of paclitaxel. Eur. J. Pharm. Biopharm. 2015, 93, 18–26.

    Google Scholar 

  197. Fan, L. H.; Ge, H. Y.; Zou, S. Q.; Xiao, Y.; Wen, H. G.; Li, Y.; Feng, H.; Nie, M. Sodium alginate conjugated graphene oxide as a new carrier for drug delivery system. Int. J. Biol. Macromol. 2016, 93, 582–590.

    Google Scholar 

  198. Xu, X.; Wang, J.; Wang, Y.; Zhao, L.; Li, Y.; Liu, C. Formation of graphene oxide-hybridized nanogels for combinative anticancer therapy. Nanomedicine 2018, 14, 2387–2395.

    Google Scholar 

  199. Yu, D. N.; Ruan, P.; Meng, Z. Y.; Zhou, J. P. The structure-dependent electric release and enhanced oxidation of drug in graphene oxide-based nanocarrier loaded with anticancer herbal drug berberine. J. Pharm. Sci. 2015, 104, 2489–2500.

    Google Scholar 

  200. Guo, Q. F.; Cao, H.; Li, X. H.; Liu, S. W. Thermosensitive hydrogel drug delivery system containing doxorubicin loaded CS–GO nanocarriers for controlled release drug in situ. Mater. Technol. 2015, 30, 294–300.

    Google Scholar 

  201. Pourjavadi, A.; Tehrani, Z. M.; Jokar, S. Chitosan based supramolecular polypseudorotaxane as a pH-responsive polymer and their hybridization with mesoporous silica-coated magnetic graphene oxide for triggered anticancer drug delivery. Polymer 2015, 76, 52–61.

    Google Scholar 

  202. Mu, S. S.; Li, G. W.; Liang, Y. Y.; Wu, T.; Ma, D. Hyperbranched polyglycerol-modified graphene oxide as an efficient drug carrier with good biocompatibility. Mater. Sci. Eng. C 2017, 78, 639–646.

    Google Scholar 

  203. Hu, X. H.; Li, D.; Tan, H. P.; Pan, C. B.; Chen, X. X. Injectable graphene oxide/graphene composite supramolecular hydrogel for delivery of anti-cancer drugs. J. Macromol. Sci. A 2014, 51, 378–384.

    Google Scholar 

  204. Yuan, Y.; Yan, Z. M.; Mu, R. J.; Wang, L.; Gong, J. N.; Hong, X.; Haruna, M. H.; Pang, J. The effects of graphene oxide on the properties and drug delivery of konjac glucomannan hydrogel. J. Appl. Polym. Sci. 2017, 134, 45327.

    Google Scholar 

  205. Ye, Y. F.; Hu, X. H. A pH-sensitive injectable nanoparticle composite hydrogel for anticancer drug delivery. J. Nanomater. 2016, 2016, Article ID 9816461.

    Google Scholar 

  206. Saeednia, L.; Yao, L.; Berndt, M.; Cluff, K.; Asmatulu, R. Structural and biological properties of thermosensitive chitosan–graphene hybrid hydrogels for sustained drug delivery applications. J. Biomed. Mater. Res. A 2017, 105, 2381–2390.

    Google Scholar 

  207. Tian, J. W.; Luo, Y. P.; Huang, L. W.; Feng, Y. Q.; Ju, H. X.; Yu, B.-Y. Pegylated folate and peptide-decorated graphene oxide nanovehicle for in vivo targeted delivery of anticancer drugs and therapeutic selfmonitoring. Biosens. Bioelectron. 2016, 80, 519–524.

    Google Scholar 

  208. Huang, Y.-P.; Hung, C.-M.; Hsu, Y.-C.; Zhong, C.-Y.; Wang, W.-R.; Chang, C.-C.; Lee, M.-J. Suppression of breast cancer cell migration by small interfering RNA delivered by polyethylenimine-functionalized graphene oxide. Nanoscale Res. Lett. 2016, 11, 247.

    Google Scholar 

  209. Masoudipour, E.; Kashanian, S.; Maleki, N. A targeted drug delivery system based on dopamine functionalized nano graphene oxide. Chem. Phys. Lett. 2017, 668, 56–63.

    Google Scholar 

  210. Alibolandi, M.; Mohammadi, M.; Taghdisi, S. M.; Ramezani, M.; Abnous, K. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohyd. Polym. 2017, 155, 218–229.

    Google Scholar 

  211. Ma, N. X.; Liu, J.; He, W. X.; Li, Z. H.; Luan, Y. X.; Song, Y. M.; Garg, S. Folic acid-grafted bovine serum albumin decorated graphene oxide: An efficient drug carrier for targeted cancer therapy. J. Colloid Interface Sci. 2017, 490, 598–607.

    Google Scholar 

  212. Deb, A.; Vimala, R. Natural and synthetic polymer for graphene oxide mediated anticancer drug delivery—A comparative study. Int. J. Biol. Macromol. 2018, 107, 2320–2333.

    Google Scholar 

  213. Cui, X. J.; Dong, L. L.; Zhong, S. L.; Shi, C.; Sun, Y. X.; Chen, P. Sonochemical fabrication of folic acid functionalized multistimuli-responsive magnetic graphene oxide-based nanocapsules for targeted drug delivery. Chem. Eng. J. 2017, 326, 839–848.

    Google Scholar 

  214. Shi, Y. F.; Xiong, Z. P.; Lu, X. F.; Yan, X.; Cai, X.; Xue, W. Novel carboxymethyl chitosan-graphene oxide hybrid particles for drug delivery. J. Mater. Sci.: Mater. Med. 2016, 27, 169.

    Google Scholar 

  215. Wang, J.; Liu, C. H.; Shuai, Y.; Cui, X. Y.; Nie, L. Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf. B: Biointerfaces 2014, 113, 223–229.

    Google Scholar 

  216. Deng, L.; Li, Q. J.; Al-Rehili, S.; Omar, H.; Almalik, A.; Alshamsan, A.; Zhang, J. F.; Khashab, N. M. Hybrid iron oxide–graphene oxide–polysaccharides microcapsule: A micro-matryoshka for on-demand drug release and antitumor therapy in vivo. ACS Appl. Mater. Interfaces 2016, 8, 6859–6868.

    Google Scholar 

  217. Khatamian, M.; Divband, B.; Farahmand-Zahed, F. Synthesis and characterization of zinc (II)-loaded zeolite/graphene oxide nanocomposite as a new drug carrier. Mater. Sci. Eng. C 2016, 66, 251–258.

    Google Scholar 

  218. Rasoulzadeh, M.; Namazi, H. Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohyd. Polym. 2017, 168, 320–326.

    Google Scholar 

  219. Zhang, H. J.; Yan, T.; Xu, S.; Feng, S. N.; Huang, D. D.; Fujita, M.; Gao, X.-D. Graphene oxide-chitosan nanocomposites for intracellular delivery of immunostimulatory CpG oligodeoxynucleotides. Mater. Sci. Eng. C 2017, 73, 144–151.

    Google Scholar 

  220. Sudhakar, K.; Moloi, S. J.; Rao, K. M. Graphene oxide/poly(N-isopropyl acrylamide)/sodium alginate-based dual responsive composite beads for controlled release characteristics of chemotherapeutic agent. Iran. Polym. J. 2017, 26, 521–530.

    Google Scholar 

  221. Wang, R.; Shou, D.; Lv, O. Y.; Kong, Y.; Deng, L. H.; Shen, J. pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int. J. Biol. Macromol. 2017, 103, 248–253.

    Google Scholar 

  222. Hurt, R. H.; Monthioux, M.; Kane, A. Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue. Carbon 2006, 44, 1028–1033.

    Google Scholar 

  223. Poland, C. A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W. A. H.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestoslike pathogenicity in a pilot study. Nat. Nanotechnol. 2008, 3, 423–428.

    Google Scholar 

  224. Sanchez, V. C.; Weston, P.; Yan, A. H.; Hurt, R. H.; Kane, A. B. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials. Part. Fibre Toxicol. 2011, 8, 17.

    Google Scholar 

  225. Li, S. H.; Peng, Z. L.; Han, X.; Leblanc, R. M. Interactions between graphene oxide and biomolecules from surface chemistry and spectroscopy. In Recent Progress in Colloid and Surface Chemistry with Biological Applications. American Chemical Society: USA, 2015; pp 43–64.

    Google Scholar 

  226. Jachak, A. C.; Creighton, M.; Qiu, Y.; Kane, A. B.; Hurt, R. H. Biological interactions and safety of graphene materials. MRS Bull. 2012, 37, 1307–1313.

    Google Scholar 

  227. Hu, C. W.; Liu, L.; Li, X. L.; Xu, Y. D.; Ge, Z. G.; Zhao, Y. J. Effect of graphene oxide on copper stress in Lemna minor L.: Evaluating growth, biochemical responses, and nutrient uptake. J. Hazard. Mater. 2018, 341, 168–176.

    Google Scholar 

  228. Gao, W. The chemistry of graphene oxide. In Graphene Oxide. Springer: Switzerland, 2015; pp 61–95.

    Google Scholar 

  229. Li, S. H.; Mulloor, J. J.; Wang, L. Y.; Ji, Y. W.; Mulloor, C. J.; Micic, M.; Orbulescu, J.; Leblanc, R. M. Strong and selective adsorption of lysozyme on graphene oxide. ACS Appl. Mater. Interfaces 2014, 6, 5704–5712.

    Google Scholar 

  230. Han, S.; Su, L. Q.; Zhai, M. H.; Ma, L.; Liu, S. W.; Teng, Y. A molecularly imprinted composite based on graphene oxide for targeted drug delivery to tumor cells. J. Mater. Sci. 2019, 54, 3331–3341.

    Google Scholar 

  231. Gurunathan, S.; Kang, M.-H.; Qasim, M.; Kim, J.-H. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer. Int. J. Mol. Sci. 2018, 19, 3264.

    Google Scholar 

  232. Zamani, M.; Rostami, M.; Aghajanzadeh, M.; Manjili, H. K.; Rostamizadeh, K.; Danafar, H. Mesoporous titanium dioxide@ zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. J. Mater. Sci. 2018, 53, 1634–1645.

    Google Scholar 

  233. Vovusha, H.; Sanyal, S.; Sanyal, B. Interaction of nucleobases and aromatic amino acids with graphene oxide and graphene flakes. J. Phys. Chem. Lett. 2013, 4, 3710–3718.

    Google Scholar 

  234. Liu, B. W.; Salgado, S.; Maheshwari, V.; Liu, J. W. DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications. Curr. Opin. Colloid Interface Sci. 2016, 26, 41–49.

    Google Scholar 

  235. Banerjee, S.; Wilson, J.; Shim, J.; Shankla, M.; Corbin, E. A.; Aksimentiev, A.; Bashir, R. Slowing DNA transport using graphene–DNA interactions. Adv. Funct. Mater. 2015, 25, 936–946.

    Google Scholar 

  236. Wu, M.; Kempaiah, R.; Huang, P.-J. J.; Maheshwari, V.; Liu, J. W. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 2011, 27, 2731–2738.

    Google Scholar 

  237. Becheru, D. F.; Vlasceanu, G. M.; Banciu, A.; Vasile, E.; Ionita, M.; Burns, J. S. Optical graphene-based biosensor for nucleic acid detection; influence of graphene functionalization and ionic strength. Int. J. Mol. Sci. 2018, 19, 3230.

    Google Scholar 

  238. Liu, X. Y.; Sen, S.; Liu, J. Y.; Kulaots, I.; Geohegan, D.; Kane, A.; Puretzky, A. A.; Rouleau, C. M.; More, K. L.; Palmore, G. T. R. et al. Antioxidant deactivation on graphenic nanocarbon surfaces. Small 2011, 7, 2775–2785.

    Google Scholar 

  239. Shubha, P.; Namratha, K.; Mithali, K.; Divya, V.; Thakur, M. S.; Byrappa, K. Green technology enabled graphene oxide reduction using Justichia wynaadensis extract and assessment of in vitro antioxidant and antibacterial activity. Adv. Sci. Lett. 2018, 24, 5726–5730.

    Google Scholar 

  240. Lu, X. L.; Feng, X. D.; Werber, J. R.; Chu, C. C.; Zucker, I.; Kim, J.-H.; Osuji, C. O.; Elimelech, M. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proc. Natl. Acad. Sci. USA 2017, E9793–E9801.

    Google Scholar 

  241. Tang, Z.; Zhao, L.; Yang, Z.; Liu, Z.; Gu, J.; Bai, B.; Liu, J.; Xu, J.; Yang, H. Mechanisms of oxidative stress, apoptosis, and autophagy involved in graphene oxide nanomaterial anti-osteosarcoma effect. Int. J. Nanomed. 2018, 13, 2907–2919.

    Google Scholar 

  242. Simsikova, M.; Sikola, T. Interaction of graphene oxide with proteins and applications of their conjugates. J. Nanomed. Res 2017, 5, 00109.

    Google Scholar 

  243. Lee, D. Y.; Khatun, Z.; Lee, J.-H.; Lee, Y.-K.; In, I. Blood compatible graphene/heparin conjugate through noncovalent chemistry. Biomacromolecules 2011, 12, 336–341.

    Google Scholar 

  244. Hashim, N. C.; Rafie, S. M. M.; Ismail, N. S.; Nordin, D. Effect of the interaction of graphene oxide nanoparticles on a biological model cell membrane. Eurasian J. Anal. Chem. 2018, 13. DOI: 10.29333/ejac/97221.

    Google Scholar 

  245. Frost, R.; Jönsson, G. E.; Chakarov, D.; Svedhem, S.; Kasemo, B. Graphene oxide and lipid membranes: Interactions and nanocomposite structures. Nano Lett. 2012, 12, 3356–3362.

    Google Scholar 

  246. Chen, J. L.; Zhou, G. Q.; Chen, L.; Wang, Y.; Wang, X. G.; Zeng, S. W. Interaction of graphene and its oxide with lipid membrane: A molecular dynamics simulation study. J. Phys. Chem. C 2016, 120, 6225–6231.

    Google Scholar 

  247. Duan, G. X.; Zhang, Y. Z.; Luan, B. Q.; Weber, J. K.; Zhou, R. W.; Yang, Z. X.; Zhao, L.; Xu, J. Y.; Luo, J. D.; Zhou, R. H. Graphene-induced pore formation on cell membranes. Sci. Rep. 2017, 7, 42767.

    Google Scholar 

  248. Banerjee, A. N. Prospects and challenges of graphene-based nanomaterials in nanomedicine. Glob. J. Nano. 2016, 1, 555552.

    Google Scholar 

  249. Snitka, V. Graphene based materials: Opportunities and challenges in nanomedicine. J. Nanomed. Res. 2015, 2, 00035.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding from the Ministry of Education Malaysia in the form of FRGS (RDU160118: FRGS/1/2016/STG07/UMP/02/3, RDU170113: FRGS/1/2017/STG07/ UMP/01/1), Universiti Malaysia Pahang grant RDU170357 and King Khalid University, the Ministry of Education in Saudi Arabia for supporting this research through grant (RCAMS/KKU/002-18) under research center for advanced material science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwok Feng Chong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghawanmeh, A.A., Ali, G.A.M., Algarni, H. et al. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res. 12, 973–990 (2019). https://doi.org/10.1007/s12274-019-2300-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2300-4

Keywords

Navigation