Skip to main content
Log in

All in one theranostic nanoplatform enables efficient anti-tumor peptide delivery for triple-modal imaging guided cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing a reliable system to efficiently and safely deliver peptide drugs into tumor tissues still remains a great challenge since the instability of peptide drugs and low ability to traverse the cell membrane. Herein, we constructed a multifunctional nanoplatform based on porous europium/gadolinium (Eu/Gd)-doped NaLa(MoO4)2 nanoparticles (NLM NPs) to deliver antitumor peptide of B-cell lymphoma/leukemia-2-like protein 11 (BIM) for cancer therapy. The porous NLM NPs exhibited inherent photoluminescent, magnetic and X-ray absorbable properties, which enable them for triple-modal bioimaging, including fluorescence, magnetic resonance imaging (MRI) and computed tomography (CT). This triple-modal bioimaging can contribute to monitoring NLM NPs biodistribution and guiding therapy in vitro and in vivo. Furthermore, the NLM NPs showed negligible cytotoxicity in vitro and tissue toxicity in vivo. Importantly, NLM NPs could load the antitumor peptide of BIM and efficiently improve the resistance of peptide drugs to proteolysis. The BIM peptide was efficiently delivered into the tumor cells by NLM NPs, which can inhibit the growth and promote the apoptosis of cancer cells in vitro, significantly inhibit the tumor growth in vivo. Notably, NLM-BIM theranostic nanoplatform exhibits low systemic toxicity and fewer side effects in vivo. The NLM NPs can serve as a promising multifunctional peptide delivery nanoplatform for multi-modal bioimaging and cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, Á. Assessment of the evolution of cancer treatment therapies. Cancers 2011, 3, 3279–3330.

    Article  Google Scholar 

  2. Niu, F.; Yan, J.; Ma, B. H.; Li, S. C.; Shao, Y. P.; He, P. C.; Zhang, W. G.; He, W. X.; Ma, P. X.; Lu, W. Y. Lanthanide-doped nanoparticles conjugated with an anti-CD33 antibody and a p53-activating peptide for acute myeloid leukemia therapy. Biomaterials 2018, 167, 132–142.

    Article  Google Scholar 

  3. Rhodes, C. A.; Pei, D. H. Bicyclic peptides as next-generation therapeutics. Chem.—Eur. J. 2017, 23, 12690–12703.

    Article  Google Scholar 

  4. Yan, J.; He, W. X.; Yan, S. Q.; Niu, F.; Liu, T. Y.; Ma, B. H.; Shao, Y. P.; Yan, Y. W.; Yang, G.; Lu, W. Y. et al. Self-assembled peptide-lanthanide nanoclusters for safe tumor therapy: Overcoming and utilizing biological barriers to peptide drug delivery. ACS Nano 2018, 12, 2017–2026.

    Article  Google Scholar 

  5. Buckley, C. D.; Pilling, D.; Henriquez, N. V.; Parsonage, G.; Threlfall, K.; Scheel-Toellner, D.; Simmons, D. L.; Akbar, A. N.; Lord, J. M.; Salmon, M. RGD peptides induce apoptosis by direct caspase-3 activation. Nature 1999, 397, 534–539.

    Article  Google Scholar 

  6. Laakkonen, P.; Åkerman, M. E.; Biliran, H.; Yang, M.; Ferrer, F.; Karpanen, T.; Hoffman, R. M.; Ruoslahti, E. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc. Natl. Acad. Sci. USA 2004, 101, 9381–9386.

    Article  Google Scholar 

  7. Reed, J. C. Apoptosis-targeted therapies for cancer. Cancer Cell 2003, 3, 17–22.

    Article  Google Scholar 

  8. Gaspar, D.; Veiga, A. S.; Castanho, M. A. R. B. From antimicrobial to anticancer peptides. A review. Front. Microbiol. 2013, 4, 294.

    Google Scholar 

  9. Öberg, K.; Kvols, L.; Caplin, M.; Delle Fave, G.; de Herder, W.; Rindi, G.; Ruszniewski, P.; Woltering, E. A.; Wiedenmann, B. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann. Oncol. 2004, 15, 966–973.

    Article  Google Scholar 

  10. Hemmings, H. C.; Egan, T. D. Pharmacology and Physiology for Anesthesia: Foundations and Clinical Application; Elsevier: Philadephia, 2013.

    Google Scholar 

  11. Caplin, M. E.; Pavel, M.; Ćwikła, J. B.; Phan, A. T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E. M.; Capdevila, J.; Wall, L. et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224–233.

    Article  Google Scholar 

  12. Frokjaer, S.; Otzen, D. E. Protein drug stability: A formulation challenge. Nat. Rev. Drug Discov. 2005, 4, 298–306.

    Article  Google Scholar 

  13. Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128.

    Article  Google Scholar 

  14. Yan, J.; He, W. X.; Li, N.; Yu, M.; Du, Y. P.; Lei, B.; Ma, P. X. Simultaneously targeted imaging cytoplasm and nucleus in living cell by biomolecules capped ultra-small GdOF nanocrystals. Biomaterials 2015, 59, 21–29.

    Article  Google Scholar 

  15. Giner-Casares, J. J.; Henriksen-Lacey, M.; Coronado-Puchau, M.; Liz-Marzán, L. M. Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Mater. Today 2016, 19, 19–28.

    Article  Google Scholar 

  16. Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021.

    Article  Google Scholar 

  17. Ge, J.; Liu, K.; Niu, W.; Chen, M.; Wang, M.; Xue, Y. M.; Gao, C. H.; Ma, P. X.; Lei, B. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration. Biomaterials 2018, 175, 19–29.

    Article  Google Scholar 

  18. Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.

    Article  Google Scholar 

  19. Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008, 2, 889–896.

    Article  Google Scholar 

  20. Shi, J. J.; Wang, L.; Gao, J.; Liu, Y.; Zhang, J.; Ma, R.; Liu, R. Y.; Zhang, Z. Z. A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials 2014, 35, 5771–5784.

    Article  Google Scholar 

  21. Liu, C. Y.; Hou, Y.; Gao, M. Y. Are rare-earth nanoparticles suitable for in vivo applications? Adv. Mater. 2014, 26, 6922–6932.

    Article  Google Scholar 

  22. Sun, Y.; Yu, M. X.; Liang, S.; Zhang, Y. J.; Li, C. G.; Mou, T. T.; Yang, W. J.; Zhang, X. Z.; Li, B.; Huang, C. H. et al. Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials 2011, 32, 2999–3007.

    Article  Google Scholar 

  23. Meiser, F.; Cortez, C.; Caruso, F. Biofunctionalization of fluorescent rareearth-doped lanthanum phosphate colloidal nanoparticles. Angew. Chem., Int. Ed. 2004, 43, 5954–5957.

    Article  Google Scholar 

  24. Wang, M.; Mi, C. C.; Zhang, Y. X.; Liu, J. L.; Li, F.; Mao, C. B.; Xu, S. K. NIR-responsive silica-coated NaYbF4: Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. J. Phys. Chem. C 2009, 113, 19021–19027.

    Article  Google Scholar 

  25. Yang, G. B.; Gong, H.; Liu, T.; Sun, X. Q.; Cheng, L.; Liu, Z. Twodimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 2015, 60, 62–71.

    Article  Google Scholar 

  26. Mishra, S. K.; Kannan, S. Doxorubicin-conjugated bimetallic silver-gadolinium nanoalloy for multimodal MRI-CT-optical imaging and pH-responsive drug release. ACS Biomater. Sci. Eng. 2017, 3, 3607–3619.

    Article  Google Scholar 

  27. Bu, W. B.; Chen, Z. X.; Chen, F.; Shi, J. L. Oleic acid/oleylamine cooperativecontrolled crystallization mechanism for monodisperse tetragonal bipyramid NaLa(MoO4)2 nanocrystals. J. Phys. Chem. C 2009, 113, 12176–12185.

    Article  Google Scholar 

  28. Kale, J.; Osterlund, E. J.; Andrews, D. W. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2017, 25, 65–80.

    Article  Google Scholar 

  29. LaBelle, J. L.; Katz, S. G.; Bird, G. H.; Gavathiotis, E.; Stewart, M. L.; Lawrence, C.; Fisher, J. K.; Godes, M.; Pitter, K.; Kung, A. L. et al. A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers. J. Clin. Invest. 2012, 122, 2018–2031.

    Article  Google Scholar 

  30. Adams, J. M. Therapeutic potential of a peptide targeting BCL-2 cell guardians in cancer. J. Clin. Invest. 2012, 122, 1965–1967.

    Article  Google Scholar 

  31. Xu, Z. H.; Li, C. X.; Li, G. G.; Chai, R. T.; Peng, C.; Yang, D. M.; Lin, J. Self-assembled 3D urchin-like NaY(MoO4)2: Eu3+/Tb3+ microarchitectures: Hydrothermal synthesis and tunable emission colors. J. Phys. Chem. C 2010, 114, 2573–2582.

    Article  Google Scholar 

  32. Park, J. H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009, 8, 331–336.

    Article  Google Scholar 

  33. Ehlerding, E. B.; Chen, F.; Cai, W. B. Biodegradable and renal clearable inorganic nanoparticles. Adv. Sci. 2016, 3, 1500223.

    Article  Google Scholar 

  34. Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923–932.

    Article  Google Scholar 

  35. Liu, Z. Q.; Yin, Z. Y.; Cox, C.; Bosman, M.; Qian, X. F.; Li, N.; Zhao, H. Y.; Du, Y. P.; Li, J.; Nocera, D. G. Room temperature stable COx-free H2 production from methanol with magnesium oxide nanophotocatalysts. Sci. Adv. 2016, 2, e1501425.

    Article  Google Scholar 

  36. Taminiau, T. H.; Karaveli, S.; van Hulst, N. F.; Zia, R. Quantifying the magnetic nature of light emission. Nat. Commun. 2012, 3, 979.

    Article  Google Scholar 

  37. Saha, A.; Mohanta, S. C.; Deka, K.; Deb, P.; Devi, P. S. Surface-engineered multifunctional Eu:Gd2O3 nanoplates for targeted and pH-responsive drug delivery and imaging applications. ACS Appl. Mater. Interfaces 2017, 9, 4126–4141.

    Article  Google Scholar 

  38. Jette, C. A.; Flanagan, A. M.; Ryan, J.; Pyati, U. J.; Carbonneau, S.; Stewart, R. A.; Langenau, D. M.; Look, A. T.; Letai, A. BIM and other BCL-2 family proteins exhibit cross-species conservation of function between zebrafish and mammals. Cell Death Differ. 2008, 15, 1063–1072.

    Article  Google Scholar 

  39. Akiyama, T.; Dass, C. R.; Choong, P. F. M. Bim-targeted cancer therapy: A link between drug action and underlying molecular changes. Mol. Cancer Ther. 2009, 8, 3173–3180.

    Article  Google Scholar 

  40. Dong, L. L.; Zhang, P.; Lei, P. P.; Song, S. Y.; Xu, X.; Du, K. M.; Feng, J.; Zhang, H. J. PEGylated GdF3:Fe nanoparticles as multimodal T1/T2-weighted MRI and X-ray CT imaging contrast agents. ACS Appl. Mater. Interfaces 2017, 9, 20426–20434.

    Article  Google Scholar 

  41. Park, J. Y.; Baek, M. J.; Choi, E. S.; Woo, S.; Kim, J. H.; Kim, T. J.; Jung, J. C.; Chae, K. S.; Chang, Y. M.; Lee, G. H. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: Account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 2009, 3, 3663–3669.

    Article  Google Scholar 

  42. Xue, Y. M.; Du, Y. Z.; Yan, J. Liu, Z. Q.; Ma, P. X.; Chen, X. F.; Lei, B. Monodisperse photoluminescent and highly biocompatible bioactive glass nanoparticles for controlled drug delivery and cell imaging. J. Mater. Chem. B. 2015, 3, 3831–3839.

    Article  Google Scholar 

  43. Lyu, L.; Cheong, H.; Ai, X. Z.; Zhang, W. M.; Li, J.; Yang, H. H.; Lin, J.; Xing, B. G. Near-infrared light-mediated rare-earth nanocrystals: Recent advances in improving photon conversion and alleviating the thermal effect. NPG Asia Mater. 2018, 10, 685–702.

    Article  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the financial support from the National Key R&D Program of China (No. 2017YFA0208000), the China National Funds for Excellent Young Scientists (No. 21522106), Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University (No. 2018LHM-KFKT004), and National Natural Science Foundation of China (Nos. 51502237, 51872224, and U1501245). We also appreciate Dr. Dong Su from the Center for Functional Nanomaterials at Brookhaven National Laboratory for his kind help in Electron Microscopy (EM) work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Lei or Yaping Du.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, X., Liu, Z., Ma, B. et al. All in one theranostic nanoplatform enables efficient anti-tumor peptide delivery for triple-modal imaging guided cancer therapy. Nano Res. 12, 593–599 (2019). https://doi.org/10.1007/s12274-018-2261-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2261-z

Keywords

Navigation