Skip to main content
Log in

Well-defined carbon nanoframes containing bimetal-N-C active sites as efficient bi-functional electrocatalysts for Li-O2 batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Design and fabrication of framework-structured porous precursors have been regarded as a prospective albeit challenging strategy to obtain bimetal/NC-enriched bifunctional elecrocatalysts. In this work, an effective bottom-up approach involving solution-based self-assembly and a post-annealing process was developed to confine (Co, Zn)-N-C active sites into N-enriched graphitic carbon nanocages. This novel architecture containing N-doped-C stabilized bimetallic nanoparticles derived from ZIF precursors was well-studied by a series of characterization and analysis techniques. Details were given that these well-dispersed (Co, Zn) nanoparticles were encapsulated into the pyridinic-N-dominated graphitic carbon nanocage with a total metal loading of approximately 7.4 at.%. This favorable hierarchical structure not only enhances the electron conductivity, but also owns a sufficient BET surface area facilitating the gas-liquid-solid triphase reaction and producing more space to store discharge products. Importantly, results infer that the interesting nanoframes manifests a satisfying ORR/OER activity and enhanced cell performance whether liquid or solid-state electrolytes are used. As such, our work rationalizes that this type of cage-shaped bimetal-N-C material is promising for high-performance Li-O2 batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, C. T.; Yu, C.; Liu, S. H.; Yang, J.; Fan, X. M.; Huang, H. W.; Qiu, J. S. 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li-O2 batteries. Adv. Funct. Mater. 2015, 25, 6913–6920.

    Article  Google Scholar 

  2. Yoon, K. R.; Shin, K.; Park, J.; Cho, S. H.; Kim, C.; Jung, J. W.; Cheong, J. Y.; Byon, H. R.; Lee, H. M.; Kim, I. D. Brush-like cobalt nitride anchored carbon nanofiber membrane: Current collector-catalyst integrated cathode for long cycle Li-O2 batteries. ACS Nano 2018, 12, 128–139.

    Article  Google Scholar 

  3. Zhang, J.; Luan, Y. P.; Lyu, Z. Y.; Wang, L. J.; Xu, L. L.; Yuan, K. D.; Pan, F.; Lai, M.; Liu, Z. L.; Chen, W. Synthesis of hierarchical porous d-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries. Nanoscale 2015, 7, 14881–14888.

    Article  Google Scholar 

  4. Yoon, K. R.; Lee, G. Y.; Jung, J. W.; Kim, N. H.; Kim, S. O.; Kim, I. D. One-dimensional RuO2/Mn2O3 hollow architectures as efficient bifunctional catalysts for lithium-oxygen batteries. Nano Lett. 2016, 16, 2076–2083.

    Article  Google Scholar 

  5. Liu, T.; Zhang, X. H.; Huang, T.; Yu, A. S. Pyridinic-N-dominated carbon frameworks with porous tungsten trioxide nano-lamellae as a promising bi-functional catalyst for Li-oxygen batteries. Nanoscale 2018, 10, 15763–15770.

    Article  Google Scholar 

  6. Feng, N. N.; He, P.; Zhou H. S. Critical challenges in rechargeable aprotic Li-O2 batteries. Adv. Energy Mater. 2016, 6, 1502303.

    Article  Google Scholar 

  7. Luo, W. B.; Gao, X. W.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Porous AgPd-Pd composite nanotubes as highly efficient electrocatalysts for lithium-oxygen batteries. Adv. Mater. 2015, 27, 6862–6869.

    Article  Google Scholar 

  8. Yuan, M. W.; Yang, Y.; Nan, C. Y.; Sun, G. B.; Li, H. F.; Ma, S. L. Porous Co3O4 nanorods anchored on graphene nanosheets as an effective electrocatalysts for aprotic Li-O2 batteries. Appl. Surf. Sci. 2018, 444, 312–319.

    Article  Google Scholar 

  9. Ren, Y. B.; Zhang, S. C.; Li, H. L.; Wei, X.; Xing, Y. L. Mesoporous Pd/Co3O4 nanosheets nanoarrays as an efficient binder/carbon free cathode for rechargeable Li-O2 batteries. Appl. Surf. Sci. 2017, 420, 222–232.

    Article  Google Scholar 

  10. Sun, W.; Wang, Y.; Wu, H. T.; Wang, Z. H.; Rooney, D.; Sun, K. N. 3D free-standing hierarchical CuCo2O4 nanowire cathodes for rechargeable lithium–oxygen batteries. Chem. Commun. 2017, 53, 8711–8714.

    Article  Google Scholar 

  11. Zhu, Y. Q.; Cao, T.; Cao, C. B.; Luo, J.; Chen, W. X.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Han, Y. H.; Li, Z. et al. One-pot pyrolysis to N-doped graphene with high-density Pt single atomic sites as heterogeneous catalyst for alkene hydrosilylation. ACS Catal. 2018, 8, 10004–10011.

    Article  Google Scholar 

  12. Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X. W.; Chen, M. W.; Zhou, H. S. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem., Int. Ed. 2014, 53, 442–446.

    Article  Google Scholar 

  13. Thomas, M.; Illathvalappil, R.; Kurungot, S.; Nair, B. N.; Mohamed, A. A. P.; Anilkumar, G. M.; Yamaguchi, T.; Hareesh, U. S. Graphene oxide sheathed ZIF-8 microcrystals: Engineered precursors of nitrogen-doped porous carbon for efficient oxygen reduction reaction (ORR) electrocatalysis. ACS Appl. Mater. Interfaces 2016, 8, 29373–29382.

    Article  Google Scholar 

  14. Wang, X. B.; Liu, J.; Leong, S.; Lin, X. C.; Wei, J.; Kong, B.; Xu, Y. F.; Low, Z. X.; Yao, J. F.; Wang, H. T. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Appl. Mater. Interfaces 2016, 8, 9080–9087.

    Article  Google Scholar 

  15. Wu, N.; Lei, Y. P.; Wang, Q. C.; Wang, B.; Han, C.; Wang, Y. D. Facile synthesis of FeCo@NC core–shell nanospheres supported on graphene as an efficient bifunctional oxygen electrocatalyst. Nano Res. 2017, 10, 2332–2343.

    Article  Google Scholar 

  16. Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

    Article  Google Scholar 

  17. Du, N. N.; Wang, C. M.; Long, R.; Xiong, Y. J. N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction. Nano Res. 2017, 10, 3228–3237.

    Article  Google Scholar 

  18. Lu, S. Q.; Zhuang, Z. B. Electrocatalysts for hydrogen oxidation and evolution reactions. Sci. China Mater. 2016, 59, 217–238.

    Article  Google Scholar 

  19. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    Article  Google Scholar 

  20. Kim, S. H.; Lee, Y. J.; Kim, D. H.; Lee, Y. J. Bimetallic metal-organic frameworks as efficient cathode catalysts for Li-O2 batteries. ACS Appl. Mater. Interfaces 2018, 10, 660–667.

    Article  Google Scholar 

  21. Guo, M. X.; Gao, T.; Ma, H.; Li, H. B. Weaving ZIF-67 by employing carbon nanotubes to constitute hybrid anode for lithium ions battery. Mater. Lett. 2018, 212, 143–146.

    Article  Google Scholar 

  22. Yu, Z.; Bai, Y.; Zhang, S. M.; Liu, Y. X.; Zhang, N. Q.; Wang, G. H.; Wei, J. H.; Wu, Q. B.; Sun, K. N. Metal-organic framework-derived Co3ZnC/Co embedded in nitrogen-doped carbon nanotube-grafted carbon polyhedra as a high-performance electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 2018, 10, 6245–6252.

    Article  Google Scholar 

  23. Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088–3095.

    Article  Google Scholar 

  24. Han, A. J.; Chen, W. X.; Zhang, S. L.; Zhang, M. L.; Han, Y. H.; Zhang, J.; Ji, S. F.; Zheng, L. R.; Wang, Y.; Gu, L. et al. A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts. Adv. Mater. 2018, 30, 1706508.

    Article  Google Scholar 

  25. Zhu, Y. Q.; Sun, W. M.; Chen, W. X.; Cao, T.; Xiong, Y.; Luo, J.; Dong, J. C.; Zheng, L. R.; Zhang, J.; Wang, X. L. et al. Scale-up biomass pathway to cobalt single-site catalysts anchored on N-doped porous carbon nanobelt with ultrahigh surface area. Adv. Funct. Mater. 2018, 28, 1802167.

    Article  Google Scholar 

  26. Zhu, Y. Q.; Sun, W. M.; Luo, J.; Chen, W. X.; Cao, T.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Zhang, M. L.; Han, Y. H. et al. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun. 2018, 9, 3861.

    Article  Google Scholar 

  27. Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.

    Article  Google Scholar 

  28. Zhu, Y. Q.; Cao, C. B.; Zhang, J. T.; Xu, X. Y. Two-dimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A 2015, 3, 9556–9564.

    Article  Google Scholar 

  29. Zhang, C. L.; Wang, B. W.; Shen, X. C.; Liu, J. W.; Kong, X. K.; Chuang, S. S. C.; Yang, D.; Dong, A. G.; Peng, Z. N. A nitrogen-doped ordered mesoporous carbon/graphene framework as bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy 2016, 30, 503–510.

    Article  Google Scholar 

  30. Jian, Z. L.; Hu, Y. S.; Ji, X. L.; Chen, W. NASICON-structured materials for energy storage. Adv. Mater. 2017, 29, 1601925.

    Article  Google Scholar 

  31. Weiss, M.; Weber, D. A.; Senyshyn, A.; Janek, J.; Zeier, W. G. Correlating transport and structural properties in Li1+xAlxGe2-x(PO4)3 (LAGP) prepared from aqueous solution. ACS Appl. Mater. Interfaces 2018, 10, 10935–10944.

    Article  Google Scholar 

  32. Zhai, D. Y.; Wang, H. H.; Yang, J. B.; Lau, K. C.; Li, K. X.; Amine, K.; Curtiss, L. A. Disproportionation in Li-O2 batteries based on a large surface area carbon cathode. J. Am. Chem. Soc. 2013, 135, 15364–15372.

    Article  Google Scholar 

  33. Leng, L. M.; Li, J.; Zeng, X. Y.; Tian, X. L.; Song, H. Y.; Cui, Z. M.; Shu, T.; Wang, H. S.; Ren, J. W.; Liao, S. J. Enhanced cyclability of Li-O2 batteries with cathodes of Ir and MnO2 supported on well-defined TiN arrays. Nanoscale 2018, 10, 2983–2989.

    Article  Google Scholar 

  34. Zhang, P.; Zhang, S. F.; He, M.; Lang, J. W.; Ren, A. M.; Xu, S.; Yan, X. B. Realizing the embedded growth of large Li2O2 aggregations by matching different metal oxides for high-capacity and high-rate lithium oxygen batteries. Adv. Sci., 2017, 4, 1700172.

    Article  Google Scholar 

  35. Black, R.; Lee, J. H.; Adams, B.; Mims, C. A.; Nazar, L. F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew. Chem., Int. Ed. 2013, 52, 392–396.

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the financial supports from the National Basic Research Program of China (No. 2014CB932301), the National Natural Science Foundation of China (No. 21473040) and Science & Technology Commission of Shanghai Municipality, China (No. 08DZ2270500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aishui Yu.

Electronic supplementary material

12274_2018_2244_MOESM1_ESM.pdf

Well-defined carbon nanoframes containing bimetal-N-C active sites as efficient bi-functional electrocatalysts for Li-O2 batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Wang, L., Huang, T. et al. Well-defined carbon nanoframes containing bimetal-N-C active sites as efficient bi-functional electrocatalysts for Li-O2 batteries. Nano Res. 12, 517–523 (2019). https://doi.org/10.1007/s12274-018-2244-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2244-0

Keywords

Navigation