Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Nano Research
  3. Article
Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Hydrophobic 1-octadecanethiol functionalized copper catalyst promotes robust high-current CO2 gas-diffusion electrolysis

05 August 2021

Liangyao Xue, Xuefeng Wu, … Huagui Yang

Killing Two Birds with One Stone: A Highly Active Tubular Carbon Catalyst with Effective N Doping for Oxygen Reduction and Hydrogen Evolution Reactions

17 December 2018

Yanqiang Li, Huiyong Huang, … Tingli Ma

Bifunctional Nb-N-C atomic catalyst for aqueous Zn-air battery driving CO2 electrolysis

18 November 2022

Sanshuang Gao, Tianwei Wang, … Xijun Liu

Synergistic Interfacial and Doping Engineering of Heterostructured NiCo(OH)x-CoyW as an Efficient Alkaline Hydrogen Evolution Electrocatalyst

03 May 2021

Ruopeng Li, Hao Xu, … Maozhong An

Interface-rich Au-doped PdBi alloy nanochains as multifunctional oxygen reduction catalysts boost the power density and durability of a direct methanol fuel cell device

20 April 2022

Xin Li, Ke Xin Yao, … Qiang Yuan

A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries

30 March 2023

Le Li, Na Li, … Hai-Qun Chen

Revealing the effect of electrocatalytic performance boost during hydrogen evolution reaction on free-standing SWCNT film electrode

07 October 2021

Karolina Kordek-Khalil, Dawid Janas & Piotr Rutkowski

Engineering Two-Phase Bifunctional Oxygen Electrocatalysts with Tunable and Synergetic Components for Flexible Zn–Air Batteries

15 May 2021

Yanli Niu, Xue Teng, … Zuofeng Chen

Porous β-FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation

18 November 2021

Hao Sun, Hua-Qing Yin, … Zhi-Ming Zhang

Download PDF
  • Research Article
  • Open Access
  • Published: 15 October 2018

Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction

  • Yingjie Li1 na1,
  • Haichuan Zhang1 na1,
  • Nana Han1,
  • Yun Kuang1,
  • Junfeng Liu1,
  • Wen Liu1,
  • Haohong Duan3 &
  • …
  • Xiaoming Sun1,2 

Nano Research volume 12, pages 177–182 (2019)Cite this article

  • 1273 Accesses

  • 30 Citations

  • Metrics details

Abstract

Oxygen reduction efficiency holds the key for renewable energy technologies including fuel cells and metal-air batteries, which involves coupling diffusion-reaction-conduction processes at the interface of catalyst/electrolyte, and thus rational electrode design facilitating mass transportation stands as a key issue for fast oxygen reduction reaction (ORR). Herein, we report a Janus electrode with asymmetric wettability prepared by partly modifying aerophobic nitrogen doped carbon nanotube arrays with polytetrafluoroethylene (PTFE) as a high performance catalytic electrode for ORR. The Janus electrode with opposite wettability on adjacent sides maintains stable gas reservoir in the aerophilic side while shortening O2 pathway to catalysts in the aerophobic side, resulting in superior ORR performance (22.5 mA/cm2 @ 0.5 V) than merely aerophilic or aerophilic electrodes. The Janus electrode endows catalytic performance even comparable to commercial Pt/C in the alkaline electrolyte, exploiting a previously unrecognized opportunity that guides electrode design for the gas-consumption electrocatalysis.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B., Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.

    Article  Google Scholar 

  2. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    Article  Google Scholar 

  3. Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

    Article  Google Scholar 

  4. Yin, P. Q.; Yao, T.; Wu, Y. E; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    Article  Google Scholar 

  5. Li, Y. G.; Dai, H. J. Recent advances in zinc–air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

    Article  Google Scholar 

  6. Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on highperformance hybrid electrocatalysts. Nat. Commun. 2013, 4, 1805.

    Article  Google Scholar 

  7. Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231.

    Article  Google Scholar 

  8. Zhong, H. X.; Li, K.; Zhang, Q.; Wang, J.; Meng, F. L.; Wu, Z. J.; Yan, J. M.; Zhang, X. B. In situ anchoring of Co9S8 nanoparticles on N and S co-doped porous carbon tube as bifunctional oxygen electrocatalysts. NPG Asia Mater. 2016, 8, e308.

    Article  Google Scholar 

  9. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    Article  Google Scholar 

  10. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  Google Scholar 

  11. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  12. Wang, C.; Chi, M. F.; Li, D. G.; Strmcnik, D.; van der Vliet, D.; Wang, G. F.; Komanicky, V.; Chang, K. C.; Paulikas, A. P.; Tripkovic, D. et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 2011, 133, 14396–14403.

    Article  Google Scholar 

  13. He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y. E.; Li, Y. D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 2016, 138, 1494–1497.

    Article  Google Scholar 

  14. Din, M. A. U.; Saleem, F.; Ni, B.; Yong, Y.; Wang, X. Porous tetrametallic PtCuBiMn nanosheets with a high catalytic activity and methanol tolerance limit for oxygen reduction reactions. Adv. Mater. 2017, 29, 1604994.

    Article  Google Scholar 

  15. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  16. Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.

    Article  Google Scholar 

  17. Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517–3523.

    Article  Google Scholar 

  18. Meng, F. L.; Wang, Z. L.; Zhong, H. X.; Wang, J.; Yan, J. M.; Zhang, X. B. Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Adv. Mater. 2016, 28, 7948–7955.

    Article  Google Scholar 

  19. Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 14235–14239.

    Article  Google Scholar 

  20. Meng, F. L.; Zhong, H. X.; Yan, J. M.; Zhang, X. B. Iron-chelated hydrogelderived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn–air batteries. Nano Res. 2017, 10, 4436–4447.

    Article  Google Scholar 

  21. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  Google Scholar 

  22. Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

    Article  Google Scholar 

  23. Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.

    Article  Google Scholar 

  24. Wu, Z. Y.; Liang, H. W.; Li, C.; Hu, B. C.; Xu, X. X.; Wang, Q.; Chen, J. F.; Yu, S. H. Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res. 2014, 7, 1861–1872.

    Article  Google Scholar 

  25. Wang, P. W.; Hayashi, T.; Meng, Q. A.; Wang, Q. B.; Liu, H.; Hashimoto, K.; Jiang, L. Highly boosted oxygen reduction reaction activity by tuning the underwater wetting state of the superhydrophobic electrode. Small 2017, 13, 1601250.

    Article  Google Scholar 

  26. Brandon, N. P.; Brett, D. J. Engineering porous materials for fuel cell applications. Philos. Trans. Roy. Soc. A 2006, 364, 147–159.

    Article  Google Scholar 

  27. Wang, Y. J.; Wilkinson, D. P.; Zhang, J. J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev. 2011, 111, 7625–7651.

    Article  Google Scholar 

  28. Cindrella, L.; Kannan, A. M.; Lin, J. F.; Saminathan, K.; Ho, Y.; Lin, C. W.; Wertz, J. Gas diffusion layer for proton exchange membrane fuel cells —A review. J. Power Sources 2009, 194, 146–160.

    Article  Google Scholar 

  29. Park, S.; Lee, J. W.; Popov, B. N. A review of gas diffusion layer in PEM fuel cells: Materials and designs. Int. J. Hydrogen Energ. 2012, 37, 5850–5865.

    Article  Google Scholar 

  30. Du, H. Y.; Wang, C. H.; Hsu, H. C.; Chang, S. T.; Yen, S. C.; Chen, L. C.; Viswanathan, B.; Chen, K. H. High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell. J. Mater. Chem. 2011, 21, 2512–2516.

    Article  Google Scholar 

  31. Lu, Z. Y.; Xu, W. W.; Ma, J.; Li, Y. J.; Sun, X. M.; Jiang, L. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction. Adv. Mater. 2016, 28, 7155–7161.

    Article  Google Scholar 

  32. Forner-Cuenca, A.; Biesdorf, J.; Gubler, L.; Kristiansen, P.; Schmidt, T. J.; Boillat, P. Engineered water highways in fuel cells: Radiation grafting of gas diffusion layers. Adv. Mater. 2015, 27, 6317–6322.

    Article  Google Scholar 

  33. Yang, H. C.; Hou, J. W.; Chen, V.; Xu, Z. K. Janus membranes: Exploring duality for advanced separation. Angew. Chem., Int. Ed. 2016, 55, 13398–13407.

    Article  Google Scholar 

  34. Yang, H. C.; Hou, J. W.; Wan, L. S.; Chen, V.; Xu, Z. K. Janus membranes with asymmetric wettability for fine bubble aeration. Adv. Mater. Interfaces 2016, 3, 1500774.

    Article  Google Scholar 

  35. Cao, M. Y.; Xiao, J. S.; Yu, C. M.; Li, K.; Jiang, L. Hydrophobic/hydrophilic cooperative Janus system for enhancement of fog collection. Small 2015, 11, 4379–4384.

    Article  Google Scholar 

  36. Chen, J. W.; Liu, Y. M.; Guo, D. W.; Cao, M. Y.; Jiang, L. Under-water unidirectional air penetration via a Janus mesh. Chem. Commun. 2015, 51, 11872–11875.

    Article  Google Scholar 

  37. Tian, X. L.; Jin, H.; Sainio, J.; Ras, R. H. A.; Ikkala, O. Droplet and fluid gating by biomimetic Janus membranes. Adv. Funct. Mater. 2014, 24, 6023–6028.

    Article  Google Scholar 

  38. Zhang, L. L.; Zhao X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely appreciate the helpful discussion with Prof. Lei Jiang. This work was financially supported by the National Natural Science Foundation of China (NSFC), the National Key Research and Development Project (No. 2016YFF0204402), the Program for Changjiang Scholars and Innovative Research Team in the University (No. IRT1205), the Fundamental Research Funds for the Central Universities, the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of PRC.

Author information

Author notes
  1. Yingjie Li and Haichuan Zhang contributed equally to this work.

Authors and Affiliations

  1. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China

    Yingjie Li, Haichuan Zhang, Nana Han, Yun Kuang, Junfeng Liu, Wen Liu & Xiaoming Sun

  2. College of Energy, Beijing University of Chemical Technology, Beijing, 100029, China

    Xiaoming Sun

  3. Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK

    Haohong Duan

Authors
  1. Yingjie Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Haichuan Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Nana Han
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Yun Kuang
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Junfeng Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Wen Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Haohong Duan
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Xiaoming Sun
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Wen Liu, Haohong Duan or Xiaoming Sun.

Electronic supplementary material

Supplementary material, approximately 1.54 MB.

Supplementary material, approximately 1.55 MB.

Supplementary material, approximately 595 KB.

Supplementary material, approximately 2.03 MB.

Supplementary material, approximately 627 KB.

Supplementary material, approximately 1.53 MB.

Supplementary material, approximately 447 KB.

Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction

Rights and permissions

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, H., Han, N. et al. Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. Nano Res. 12, 177–182 (2019). https://doi.org/10.1007/s12274-018-2199-1

Download citation

  • Received: 28 July 2018

  • Revised: 26 August 2018

  • Accepted: 04 September 2018

  • Published: 15 October 2018

  • Issue Date: January 2019

  • DOI: https://doi.org/10.1007/s12274-018-2199-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Janus materials
  • electrode
  • gas diffusion
  • oxygen reduction reaction
  • fuel cells
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.