Skip to main content
Log in

Dynamic nanoscale imaging of enriched CO adlayer on Pt(111) confined under h-BN monolayer in ambient pressure atmospheres

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fundamental understanding of chemistry confined to nanospace remains a challenge since molecules encapsulated in confined microenvironments are difficult to be characterized. Here, we show that CO adsorption on Pt(111) confined under monolayer hexagonal boron nitride (h-BN) can be dynamically imaged using near ambient pressure scanning tunneling microscope (NAP-STM) and thanks to tunneling transparency of the top h-BN layer. The observed CO superstructures on Pt(111) in different CO atmospheres allow to derive surface coverages of CO adlayers, which are higher in the confined nanospace between h-BN and Pt(111) than those on the open Pt surface under the same conditions. Dynamic NAP-STM imaging data together with theoretical calculations confirm confinement-induced molecule enrichment effect within the 2D nanospace, which reveals new chemistry aroused by the confined nanoreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrosko, S. H.; Johnson, R.; White, H.; Mirkin, C. A. Nanoreactors: Small spaces, big implications in chemistry. J. Am. Chem. Soc. 2016, 138, 7443–7445.

    Article  Google Scholar 

  2. Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Reactivity within a confined self-assembled nanospace. Chem. Soc. Rev. 2008, 37, 247–262.

    Article  Google Scholar 

  3. Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 2017, 46, 1842–1874.

    Article  Google Scholar 

  4. Gounder, R.; Iglesia, E. The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chem. Commun. 2013, 49, 3491–3509.

    Article  Google Scholar 

  5. Janda, A.; Vlaisavljevich, B.; Lin, L. C.; Smit, B.; Bell, A. T. Effects of zeolite structural confinement on adsorption thermodynamics and reaction kinetics for monomolecular cracking and dehydrogenation of n-butane. J. Am. Chem. Soc. 2016, 138, 4739–4756.

    Article  Google Scholar 

  6. Sastre, G.; Corma, A. The confinement effect in zeolites. J. Mol. Catal. A Chem. 2009, 305, 3–7.

    Article  Google Scholar 

  7. Miners, S. A.; Rance, G. A.; Khlobystov, A. N. Chemical reactions confined within carbon nanotubes. Chem. Soc. Rev. 2016, 45, 4727–4746.

    Article  Google Scholar 

  8. Pan, X. L.; Bao, X. H. The effects of confinement inside carbon nanotubes on catalysis. ACC. Chem. Res. 2011, 44, 553–562.

    Article  Google Scholar 

  9. Li, H. B.; Xiao, J. P.; Fu, Q.; Bao, X. H. Confined catalysis under twodimensional materials. Proc. Natl. Acad. Sci. USA 2017, 114, 5930–5934.

    Article  Google Scholar 

  10. Doyle, A. D.; Montoya, J. H.; Vojvodic, A. Improving oxygen electrochemistry through nanoscopic confinement. ChemCatChem 2015, 7, 738–742.

    Article  Google Scholar 

  11. Kovtyukhova, N. I.; Wang, Y. X.; Berkdemir, A.; Cruz-Silva, R.; Terrones, M.; Crespi, V. H.; Mallouk, T. E. Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat. Chem. 2014, 6, 957–963.

    Article  Google Scholar 

  12. Yu, C. G.; He, J. Synergic catalytic effects in confined spaces. Chem. Commun. 2012, 48, 4933–4940.

    Article  Google Scholar 

  13. Ferrighi, L.; Datteo, M.; Fazio, G.; Di Valentin, C. Catalysis under cover: Enhanced reactivity at the interface between (doped) graphene and anatase TiO2. J. Am. Chem. Soc. 2016, 138, 7365–7376.

    Article  Google Scholar 

  14. Prieto, M. J.; Klemm, H. W.; Xiong, F.; Gottlob, D. M.; Menzel, D.; Schmidt, T.; Freund, H. J. Water formation under silica thin films: Real-time observation of a chemical reaction in a physically confined space. Angew. Chem., Int. Ed. 2018, 57, 8749–8753.

    Article  Google Scholar 

  15. Yang, F.; Deng, D. H.; Pan, X. L.; Fu, Q.; Bao, X. H. Understanding nano effects in catalysis. Natl. Sci. Rev. 2015, 2, 183–201.

    Article  Google Scholar 

  16. Xiao, J. P.; Pan, X. L.; Guo, S. J.; Ren, P. J.; Bao, X. H. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 477–482.

    Article  Google Scholar 

  17. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    Article  Google Scholar 

  18. Feng, X. F.; Maier, S.; Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc. 2012, 134, 5662–5668.

    Article  Google Scholar 

  19. Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P. et al. Graphene cover-promoted metalcatalyzed reactions. Proc. Natl. Acad. Sci. USA 2014, 111, 17023–17028.

    Article  Google Scholar 

  20. Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem., Int. Ed. 2012, 51, 4856–4859.

    Article  Google Scholar 

  21. Zhou, Y. N.; Chen, W.; Cui, P.; Zeng, J.; Lin, Z. N.; Kaxiras, E.; Zhang, Z. Y. Enhancing the hydrogen activation reactivity of nonprecious metal substrates via confined catalysis underneath graphene. Nano Lett. 2016, 16, 6058–6063.

    Article  Google Scholar 

  22. Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175–8179.

    Article  Google Scholar 

  23. Jiao, F.; Li, J. J.; Pan, X. L.; Xiao, J. P.; Li, H. B.; Ma, H.; Wei, M. M.; Pan, Y.; Zhou, Z. Y.; Li, M. R. et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065–1068.

    Article  Google Scholar 

  24. Ratnasamy, C.; Wagner, J. P. Water gas shift catalysis. Catal. Rev. 2009, 51, 325–440.

    Article  Google Scholar 

  25. Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 2015, 350, 189–192.

    Article  Google Scholar 

  26. Zhang, Y. H.; Weng, X. F.; Li, H.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Liu, Z.; Chen, M. S.; Fu, Q.; Bao, X. H. Hexagonal boron nitride cover on Pt(111): A new route to tune molecule-metal interaction and metal-catalyzed reactions. Nano Lett. 2015, 15, 3616–3623.

    Article  Google Scholar 

  27. Wei, M. M.; Fu, Q.; Yang, Y.; Wei, W.; Crumlin, E.; Bluhm, H.; Bao, X. H. Modulation of surface chemistry of Co on NI(111) by surface graphene and carbidic carbon. J. Phys. Chem. C 2015, 119, 13590–13597.

    Article  Google Scholar 

  28. Nilsson, L.; Andersen, M.; Balog, R.; Lægsgaard, E.; Hofmann, P.; Besenbacher, F.; Hammer, B.; Stensgaard, I.; Hornekær, L. Graphene coatings: Probing the limits of the one atom thick protection layer. ACS Nano 2012, 6, 10258–10266.

    Article  Google Scholar 

  29. Grånäs, E.; Andersen, M.; Arman, M. A.; Gerber, T.; Hammer, B.; Schnadt, J.; Andersen, J. N.; Michely, T.; Knudsen, J. CO intercalation of graphene on Ir(111) in the millibar regime. J. Phys. Chem. C 2013, 117, 16438–16447.

    Article  Google Scholar 

  30. Tao, F.; Crozier, P. A. Atomic-scale observations of catalyst structures under reaction conditions and during catalysis. Chem. Rev. 2016, 116, 3487–3539.

    Article  Google Scholar 

  31. Dou, J.; Sun, Z. C.; Opalade, A. A.; Wang, N.; Fu, W. S.; Tao, F. Operando chemistry of catalyst surfaces during catalysis. Chem. Soc. Rev. 2017, 46, 2001–2027.

    Article  Google Scholar 

  32. Montano, M.; Tang, D. C.; Somorjai, G. A. Scanning tunneling microscopy (STM) at high pressures. Adsorption and catalytic reaction studies on platinum and rhodium single crystal surfaces. Catal. Lett. 2006, 107, 131–141.

    Google Scholar 

  33. Kim, J.; Noh, M. C.; Doh, W. H.; Park, J. Y. In situ observation of competitive Co and O2 adsorption on the Pt(111) surface using near-ambient pressure scanning tunneling microscopy. J. Phys. Chem. C 2018, 122, 6246–6254.

    Article  Google Scholar 

  34. Vang, R. T.; Laegsgaard, E.; Besenbacher, F. Bridging the pressure gap in model systems for heterogeneous catalysis with high-pressure scanning tunneling microscopy. Phys. Chem. Chem. Phys. 2007, 9, 3460–3469.

    Article  Google Scholar 

  35. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  36. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  37. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  38. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  Google Scholar 

  39. Zhao, P.; He, Y. R.; Cao, D. B.; Wen, X. D.; Xiang, H. W.; Li, Y. W.; Wang, J. G.; Jiao, H. J. High coverage adsorption and co-adsorption of CO and H2 on Ru(0001) from DFT and thermodynamics. Phys. Chem. Chem. Phys. 2015, 17, 19446–19456.

    Article  Google Scholar 

  40. Brugger, T.; Ma, H. F.; Iannuzzi, M.; Berner, S.; Winkler, A.; Hutter, J.; Osterwalder, J.; Greber, T. Nanotexture switching of single-layer hexagonal boron nitride on rhodium by intercalation of hydrogen atoms. Angew. Chem., Int. Ed. 2010, 49, 6120–6124.

    Article  Google Scholar 

  41. Sutter, P.; Albrecht, P.; Tong, X.; Sutter, E. Mechanical decoupling of graphene from Ru(0001) by interfacial reaction with oxygen. J. Phys. Chem. C 2013, 117, 6320–6324.

    Article  Google Scholar 

  42. Ng, M. L.; Shavorskiy, A.; Rameshan, C.; Mikkelsen, A.; Lundgren, E.; Preobrajenski, A.; Bluhm, H. Reversible modification of the structural and electronic properties of a boron nitride monolayer by CO intercalation. ChemPhysChem 2015, 16, 923–927.

    Article  Google Scholar 

  43. Dong, A. Y.; Fu, Q.; Wu, H.; Wei, M. M.; Bao, X. H. Factors controlling the CO intercalation of h-BN overlayers on Ru(0001). Phys. Chem. Chem. Phys. 2016, 18, 24278–24284.

    Article  Google Scholar 

  44. Kidambi, P. R.; Blume, R.; Kling, J.; Wagner, J. B.; Baehtz, C.; Weatherup, R. S.; Schloegl, R.; Bayer, B. C.; Hofmann, S. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper. Chem. Mater. 2014, 26, 6380–6392.

    Article  Google Scholar 

  45. González-Herrero, H.; Pou, P.; Lobo-Checa, J.; Fernández-Torre, D.; Craes, F.; Martínez-Galera, A. J.; Ugeda, M. M.; Corso, M.; Ortega, J. E.; Gómez-Rodríguez, J. M. et al. Graphene tunable transparency to tunneling electrons: A direct tool to measure the local coupling. ACS Nano 2016, 10, 5131–5144.

    Article  Google Scholar 

  46. Rutter, G. M.; Guisinger, N. P.; Crain, J. N.; Jarvis, E. A. A.; Stiles, M. D.; Li, T.; First, P. N.; Stroscio, J. A. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy. Phys. Rev. B 2007, 76, 235416.

    Article  Google Scholar 

  47. Brar, V. W.; Zhang, Y. B.; Yayon, Y.; Ohta, T.; McChesney, J. L.; Bostwick, A.; Rotenberg, E.; Horn, K.; Crommie, M. F. Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC. Appl. Phys. Lett. 2007, 91, 122102.

    Article  Google Scholar 

  48. Altfeder, I. B.; Chen, D. M.; Matveev, K. A. Imaging buried interfacial lattices with quantized electrons. Phys. Rev. Lett. 1998, 80, 4895–4898.

    Article  Google Scholar 

  49. Longwitz, S. R.; Schnadt, J.; Vestergaard, E. K.; Vang, R. T.; Stensgaard, I.; Brune, H.; Besenbacher, F. High-coverage structures of carbon monoxide adsorbed on Pt(111) studied by high-pressure scanning tunneling microscopy. J. Phys. Chem. B 2004, 108, 14497–14502.

    Article  Google Scholar 

  50. Tao, F.; Dag, S.; Wang, L.-W.; Liu, Z.; Butcher, D. R.; Bluhm, H.; Salmeron, M.; Somorjai, G. A. Break-up of stepped platinum catalyst surfaces by high CO coverage. Science 2010, 327, 850–853.

    Article  Google Scholar 

  51. Jensen, J. A.; Rider, K. B.; Salmeron, M.; Somorjai, G. A. High pressure adsorbate structures studied by scanning tunneling microscopy: CO on Pt(111) in equilibrium with the gas phase. Phys. Rev. Lett. 1998, 80, 1228–1231.

    Article  Google Scholar 

  52. Wakisaka, M.; Yoneyama, T.; Ashizawa, S.; Hyuga, Y.; Ohkanda, T.; Uchida, H.; Watanabe, M. Structural variations of CO adlayers on a Pt(100) electrode in 0.1 M HClO4 solution: An in situ STM study. Phys. Chem. Chem. Phys. 2013, 15, 11038–11047.

    Article  Google Scholar 

  53. Lucas, C. A.; Markovic, N. M.; Ross, P. N. The adsorption and oxidation of carbon monoxide at the Pt(111)/electrolyte interface: Atomic structure and surface relaxation. Surf. Sci. 1999, 425, L381–L386.

    Article  Google Scholar 

  54. Yoshimi, K.; Song, M.-B.; Ito, M. Carbon monoxide oxidation on a Pt(111) electrode studied by in-situ IRAS and STM: Coadsorption of CO with water on Pt(111). Surf. Sci. 1996, 368, 389–395.

    Article  Google Scholar 

  55. Turro, N. J.; Wan, P. Photolysis of dibenzyl ketones adsorbed on zeolite molecular sieves. correlation of observed cage effects with carbonyl carbon-13 enrichment efficiencies. J. Am. Chem. Soc. 1985, 107, 678–682.

    Google Scholar 

  56. Zhang, Y. H.; Wang, X. Y.; Shan, W.; Wu, B. Y.; Fan, H. Z.; Yu, X. J.; Tang, Y.; Yang, P. Y. Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis. Angew. Chem., Int. Ed. 2005, 44, 615–617.

    Article  Google Scholar 

  57. Li, Y. Y.; Perera, S. P.; Crittenden, B. D. Zeolite monoliths for air separation: Part 2: Oxygen enrichment, pressure drop and pressurization. Chem. Eng. Res. Des. 1998, 76, 931–941.

    Article  Google Scholar 

  58. Guan, J.; Pan, X. L.; Liu, X.; Bao, X. H. Syngas segregation induced by confinement in carbon nanotubes: A combined first-principles and monte carlo study. J. Phys. Chem. C 2009, 113, 21687–21692.

    Article  Google Scholar 

  59. Sun, M. M.; Dong, J. C.; Lv, Y.; Zhao, S. Q.; Meng, C. X.; Song, Y. J.; Wang, G. X.; Li, J. F.; Fu, Q.; Tian, Z. Q. et al. Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells. Nano Res. 2018, 11, 3490–3498.

    Article  Google Scholar 

  60. Sun, M. M.; Fu, Q.; Gao, L. J.; Zheng, Y. P.; Li, Y. Y.; Chen, M. S.; Bao, X. H. Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core–shell nanoreactors. Nano Res. 2017, 10, 1403–1412.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21688102, 21621063, 91545204, and 21703274), the Ministry of Science and Technology of China (No. 2016YFA0200200), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020000). The authors are grateful for the support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (SINANO) and discussions with Dr. Yang Yang and Dr. Haobo Li.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Cui or Qiang Fu.

Electronic supplementary material

12274_2018_2184_MOESM1_ESM.pdf

Dynamic nanoscale imaging of enriched CO adlayer on Pt(111) confined under h-BN monolayer in ambient pressure atmospheres

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Ren, P., Zhao, P. et al. Dynamic nanoscale imaging of enriched CO adlayer on Pt(111) confined under h-BN monolayer in ambient pressure atmospheres. Nano Res. 12, 85–90 (2019). https://doi.org/10.1007/s12274-018-2184-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2184-8

Keywords

Navigation