Skip to main content
Log in

Photo-controlled release of paclitaxel and model drugs from RNA pyramids

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stimuli-responsive release of drugs from a nanocarrier in spatial-, temporal-, and dosage-controlled fashions is of great interest in the pharmaceutical industry. Paclitaxel is one of the most effective and popular chemotherapeutic drugs against a number of cancers such as metastatic or nonmetastatic breast cancer, non–small cell lung cancer, refractory ovarian cancer, AIDS-related Kaposi’s sarcoma, and head and neck cancers. Here, by taking the advantage of RNA nanotechnology in biomedical and material science, we developed a three-dimensional pyramid-shaped RNA nanocage for a photocontrolled release of cargo, using paclitaxel as a model drug. The light-triggered release of paclitaxel or fluorophore Cy5 was achieved by incorporation of photocleavable spacers into the RNA nanoparticles. Upon irradiation with ultraviolet light, cargos were rapidly released (within 5 min). In vitro treatment of breast cancer cells with the RNA nanoparticles harboring photocleavable paclitaxel showed higher cytotoxicity as compared to RNA nanoparticles without the photocleavable spacer. The methodology provides proof of concept for the application of the light-triggered controlled release of drugs from RNA nanocages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karimi, M.; Ghasemi, A.; Sahandi, Z. P.; Rahighi, R.; Moosavi Basri, S. M.; Mirshekari, H.; Amiri, M.; Shafaei, P. Z.; Aslani, A.; Bozorgomid, M. et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457–1501.

    Article  Google Scholar 

  2. Hoffman, A. S. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev. 2013, 65, 10–16.

    Article  Google Scholar 

  3. Blum, A. P.; Kammeyer, J. K.; Rush, A. M.; Callmann, C. E.; Hahn, M. E.; Gianneschi, N. C. Stimuli-responsive nanomaterials for biomedical applications. J. Am. Chem. Soc. 2015, 137, 2140–2154.

    Article  Google Scholar 

  4. Rahoui, N.; Jiang, B.; Taloub, N.; Huang, Y. D. Spatio-temporal control strategy of drug delivery systems based nano structures. J. Control. Release 2017, 255, 176–201.

    Article  Google Scholar 

  5. Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics 2016, 6, 1306–1323.

    Article  Google Scholar 

  6. Kahn, J. S.; Hu, Y. W.; Willner, I. Stimuli-responsive DNA-based hydrogels: From basic principles to applications. Acc. Chem. Res. 2017, 50, 680–690.

    Article  Google Scholar 

  7. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

    Article  Google Scholar 

  8. Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014, 13, 813–827.

    Article  Google Scholar 

  9. Lin, Z. Q.; Gao, W.; Hu, H. X.; Ma, K.; He, B.; Dai, W. B.; Wang, X. Q.; Wang, J. C.; Zhang, X.; Zhang, Q. Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: High drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J. Control. Release 2014, 174, 161–170.

    Article  Google Scholar 

  10. Rapoport, N. Y.; Kennedy, A. M.; Shea, J. E.; Scaife, C. L.; Nam, K. H. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J. Control. Release 2009, 138, 268–276.

    Article  Google Scholar 

  11. Alam, M. M.; Han, H. S.; Sung, S.; Kang, J. H.; Sa, K. H.; Al Faruque, H.; Hong, J.; Nam, E. J.; Kim, I. S.; Park, J. H. et al. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J. Control. Release 2017, 252, 62–72.

    Article  Google Scholar 

  12. Li, J.; Huo, M. R.; Wang, J.; Zhou, J. P.; Mohammad, J. M.; Zhang, Y. L.; Zhu, Q. N.; Waddad, A. Y.; Zhang, Q. Redox-sensitive micelles selfassembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials 2012, 33, 2310–2320.

    Article  Google Scholar 

  13. Veetil, A. T.; Chakraborty, K.; Xiao, K.; Minter, M. R.; Sisodia, S. S.; Krishnan, Y. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules. Nat. Nanotechnol. 2017, 12, 1183–1189.

    Article  Google Scholar 

  14. Spring, B. Q.; Bryan, S. R.; Zheng, L. Z.; Mai, Z. M.; Watanabe, R.; Sherwood, M. E.; Schoenfeld, D. A.; Pogue, B. W.; Pereira, S. P.; Villa, E. et al. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nat. Nanotechnol. 2016, 11, 378–387.

    Article  Google Scholar 

  15. Karimi, M.; Sahandi, Z. P.; Baghaee-Ravari, S.; Ghazadeh, M.; Mirshekari, H.; Hamblin, M. R. Smart nanostructures for cargo delivery: Uncaging and activating by light. J. Am. Chem. Soc. 2017, 139, 4584–4610.

    Article  Google Scholar 

  16. Bansal, A.; Zhang, Y. Photocontrolled nanoparticle delivery systems for biomedical applications. Acc. Chem. Res. 2014, 47, 3052–3060.

    Article  Google Scholar 

  17. Wang, Y. Y.; Deng, Y. B.; Luo, H. H.; Zhu, A. J.; Ke, H. T.; Yang, H.; Chen, H. B. Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS Nano 2017, 11, 12134–12144.

    Article  Google Scholar 

  18. Shim, G.; Ko, S.; Kim, D.; Le, Q. V.; Park, G. T.; Lee, J.; Kwon, T.; Choi, H. G.; Kim, Y. B.; Oh, Y. K. Light-switchable systems for remotely controlled drug delivery. J. Control. Release 2017, 267, 67–79.

    Article  Google Scholar 

  19. Kohman, R. E.; Cha, S. S.; Man, H. Y.; Han, X. Light-triggered release of bioactive molecules from DNA nanostructures. Nano Lett. 2016, 16, 2781–2785.

    Article  Google Scholar 

  20. Geng, S. Y.; Wang, Y. Z.; Wang, L. P.; Kouyama, T.; Gotoh, T.; Wada, S.; Wang, J. Y. A light-responsive self-assembly formed by a cationic azobenzene derivative and SDS as a drug delivery system. Sci. Rep. 2017, 7, 39202.

    Article  Google Scholar 

  21. Basuki, J. S.; Qie, F. X.; Mulet, X.; Suryadinata, R.; Vashi, A. V.; Peng, Y. Y.; Li, L. L.; Hao, X. J.; Tan, T. W.; Hughes, T. C. Photo-modulated therapeutic protein release from a hydrogel depot using visible light. Angew. Chem., Int. Ed. 2017, 56, 966–971.

    Article  Google Scholar 

  22. Lajunen, T.; Nurmi, R.; Kontturi, L.; Viitala, L.; Yliperttula, M.; Murtomaki, L.; Urtti, A. Light activated liposomes: Functionality and prospects in ocular drug delivery. J. Control. Release 2016, 244, 157–166.

    Article  Google Scholar 

  23. Sun, W. J.; Jiang, T. Y.; Lu, Y.; Reiff, M.; Mo, R.; Gu, Z. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J. Am. Chem. Soc. 2014, 136, 14722–14725.

    Article  Google Scholar 

  24. Sun, W. J.; Ji, W. Y.; Hall, J. M.; Hu, Q. Y.; Wang, C.; Beisel, C. L.; Gu, Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem., Int. Ed. 2015, 54, 12029–12033.

    Article  Google Scholar 

  25. Shu, Y.; Pi, F. M.; Sharma, A.; Rajabi, M.; Haque, F.; Shu, D.; Leggas, M.; Evers, B. M.; Guo, P. X. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv. Drug Deliv. Rev. 2014, 66, 74–89.

    Article  Google Scholar 

  26. Jasinski, D.; Haque, F.; Binzel, D. W.; Guo, P. X. Advancement of the emerging field of RNA nanotechnology. ACS Nano 2017, 11, 1142–1164.

    Article  Google Scholar 

  27. Li, H.; Lee, T.; Dziubla, T.; Pi, F. M.; Guo, S. J.; Xu, J.; Li, C.; Haque, F.; Liang, X. J.; Guo, P. X. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today 2015, 10, 631–655.

    Article  Google Scholar 

  28. Shu, Y.; Haque, F.; Shu, D.; Li, W.; Zhu, Z.; Kotb, M.; Lyubchenko, Y.; Guo, P. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA 2013, 19, 767–777.

    Article  Google Scholar 

  29. Haque F, Shu D, Shu Y, Shlyakhtenko L, Rychahou P, Evers M, Guo P. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today 2012, 7, 245–257.

    Article  Google Scholar 

  30. Shu, D.; Shu, Y.; Haque, F.; Abdelmawla, S.; Guo, P. X. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat. Nanotechnol. 2011, 6, 658–667.

    Article  Google Scholar 

  31. Piao, X. J.; Wang, H. Z.; Binzel, D. W.; Guo, P. X. Assessment and comparison of thermal stability of phosphorothioate-DNA, DNA, RNA, 2’-F RNA, and LNA in the context of Phi29 pRNA 3WJ. RNA 2018, 24, 67–76.

    Article  Google Scholar 

  32. Binzel, D.; Shu, Y.; Li, H.; Sun, M. Y.; Zhang, Q. S.; Shu, D.; Guo, B.; Guo, P. X. Specific delivery of MiRNA for high efficient inhibition of prostate cancer by RNA nanotechnology. Mol. Ther. 2016, 24, 1267–1277.

    Article  Google Scholar 

  33. Binzel, D. W.; Khisamutdinov, E. F.; Guo, P. X. Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments. Biochemistry 2014, 53, 2221–2231.

    Article  Google Scholar 

  34. Jasinski, D. L.; Khisamutdinov, E. F.; Lyubchenko, Y. L.; Guo, P. X. Physicochemically tunable polyfunctionalized RNA square architecture with fluorogenic and ribozymatic properties. ACS Nano 2014, 8, 7620–7629.

    Article  Google Scholar 

  35. Shu, D.; Li, H.; Shu, Y.; Xiong, G. F.; Carson, W. E.; Haque, F.; Xu, R.; Guo, P. X. Systemic delivery of anti-miRNA for suppression of triple negative breast cancer utilizing RNA nanotechnology. ACS Nano 2015, 9, 9731–9740.

    Article  Google Scholar 

  36. Cui, D. X.; Zhang, C. L.; Liu, B.; Shu, Y.; Du, T.; Shu, D.; Wang, K.; Dai, F. P.; Liu, Y. L.; Li, C. et al. Regression of gastric cancer by systemic injection of RNA nanoparticles carrying both ligand and siRNA. Sci. Rep. 2015, 5, 10726.

    Article  Google Scholar 

  37. Khisamutdinov, E. F.; Jasinski, D. L.; Li, H.; Zhang, K. M.; Chiu, W.; Guo, P. X. Fabrication of RNA 3D nanoprisms for loading and protection of small RNAs and model drugs. Adv. Mater. 2016, 28, 10079–10087.

    Article  Google Scholar 

  38. Li, H.; Zhang, K. M.; Pi, F. M.; Guo, S. J.; Shlyakhtenko, L.; Chiu, W.; Shu, D.; Guo, P. X. Controllable self-assembly of RNA tetrahedrons with precise shape and size for cancer targeting. Adv. Mater. 2016, 28, 7501–7507.

    Article  Google Scholar 

  39. Xu, C. C.; Haque, F.; Jasinski, D. L.; Binzel, D. W.; Shu, D.; Guo, P. X. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Lett. 2018, 414, 57–70.

    Article  Google Scholar 

  40. Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971, 93, 2325–2327.

    Google Scholar 

  41. Spencer, C. M.; Faulds, D. Paclitaxel. Drugs 1994, 48, 794–847.

    Article  Google Scholar 

  42. Rowinsky, E. K.; Donehower, R. C. Paclitaxel (Taxol). N. Engl. J. Med. 1995, 332, 1004–1014.

    Article  Google Scholar 

  43. Horwitz, S. B. Mechanism of action of Taxol. Trends Pharmacol. Sci. 1992, 13, 134–136.

    Article  Google Scholar 

  44. Singla, A. K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm. 2002, 235, 179–192.

    Article  Google Scholar 

  45. Gelderblom, H.; Verweij, J.; Nooter, K.; Sparreboom, A. Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. Eur. J. Cancer 2001, 37, 1590–1598.

    Article  Google Scholar 

  46. Shu Y, Yin H, Rajabi M, Li H, Vieweger M, Guo S, Shu D, Guo P. RNA-based micelles: A novel platform for paclitaxel loading and delivery. J. Control. Release, 2018, 14, 17–29.

    Article  Google Scholar 

  47. Kim, S. C.; Kim, D. W.; Shim, Y. H.; Bang, J. S.; Oh, H. S.; Kim, S. W.; Seo, M. H. In vivo evaluation of polymeric micellar paclitaxel formulation: Toxicity and efficacy. J. Control. Release 2001, 72, 191–202.

    Article  Google Scholar 

  48. Bedikian, A. Y.; Plager, C.; Papadopoulos, N.; Eton, O.; Ellerhorst, J.; Smith, T. Phase II evaluation of paclitaxel by short intravenous infusion in metastatic melanoma. Melanoma Res. 2004, 14, 63–66.

    Article  Google Scholar 

  49. Hwu, J. R.; Lin, Y. S.; Josephrajan, T.; Hsu, M. H.; Cheng, F. Y.; Yeh, C. S.; Su, W. C.; Shieh, D. B. Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J. Am. Chem. Soc. 2009, 131, 66–68.

    Article  Google Scholar 

  50. Yoshizawa, Y.; Kono, Y.; Ogawara, K.; Kimura, T.; Higaki, K. PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy. Int. J. Pharm. 2011, 412, 132–141.

    Article  Google Scholar 

  51. Hamaguchi, T.; Kato, K.; Yasui, H.; Morizane, C.; Ikeda, M.; Ueno, H.; Muro, K.; Yamada, Y.; Okusaka, T.; Shirao, K. et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br. J. Cancer 2007, 97, 170–176.

    Article  Google Scholar 

  52. Lay, C. L.; Liu, H. Q.; Tan, H. R.; Liu, Y. Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graftcarbon nanotubes for potent cancer therapeutics. Nanotechnology 2010, 21, 065101.

    Article  Google Scholar 

  53. Deng, J. X.; Huang, L.; Liu, F. Understanding the structure and stability of paclitaxel nanocrystals. Int. J. Pharm. 2010, 390, 242–249.

    Article  Google Scholar 

  54. Walter, F.; Murchie, A. I.; Lilley, D. M. J. Folding of the four-way RNA junction of the hairpin ribozyme. Biochemistry 1998, 37, 17629–17636.

    Article  Google Scholar 

  55. Binzel, D. W.; Khisamutdinov, E.; Vieweger, M.; Ortega, J.; Li, J. Y.; Guo, P. X. Mechanism of three-component collision to produce ultrastable pRNA three-way junction of Phi29 DNA-packaging motor by kinetic assessment. RNA 2016, 22, 1710–1718.

    Article  Google Scholar 

  56. Benkato, K.; O’Brien, B.; Bui, M. N.; Jasinski, D. L.; Guo, P. X.; Khisamutdinov, E. F. Evaluation of thermal stability of RNA nanoparticles by temperature gradient gel electrophoresis (TGGE) in native condition. In RNA Nanostructures. Methods in Molecular Biology, vol 1632. Bindewald, E.; Shapiro, B., Eds.; Humana Press: New York, NY, 2017; pp 123–133.

    Google Scholar 

  57. Lee, T. J.; Haque, F.; Shu, D.; Yoo, J. Y.; Li, H.; Yokel, R. A.; Horbinski, C.; Kim, T. H.; Kim, S. H.; Kwon, C. H. et al. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Oncotarget 2015, 6, 14766–14776.

    Google Scholar 

  58. Tiemann, K.; Rossi, J. J. RNAi-based therapeutics–current status, challenges and prospects. EMBO Mol. Med. 2009, 1, 142–151.

    Article  Google Scholar 

  59. Shu, D.; Khisamutdinov, E. F.; Zhang, L.; Guo, P. X. Programmable folding of fusion RNA in vivo and in vitro driven by pRNA 3WJ motif of phi29 DNA packaging motor. Nucleic Acids Res. 2014, 42, e10.

    Article  Google Scholar 

  60. Kolpashchikov, D. M. Binary malachite green aptamer for fluorescent detection of nucleic acids. J. Am. Chem. Soc. 2005, 127, 12442–12443.

    Article  Google Scholar 

  61. Pothoulakis, G.; Ceroni, F.; Reeve, B.; Ellis, T. The spinach RNA aptamer as a characterization tool for synthetic biology. ACS Synth. Biol. 2014, 3, 182–187.

    Article  Google Scholar 

  62. Sassanfar, M.; Szostak, J. W. An RNA motif that binds ATP. Nature 1993, 364, 550–553.

    Article  Google Scholar 

  63. Srisawat, C.; Engelke, D. R. Streptavidin aptamers: Affinity tags for the study of RNAs and ribonucleoproteins. RNA 2001, 7, 632–641.

    Article  Google Scholar 

  64. Hoeprich, S.; Zhou, Q.; Guo, S.; Qi, G.; Wang, Y.; Guo, P. Bacterial virus Phi29 pRNA as a hammerhead ribozyme escort to destroy hepatitis B virus. Gene Ther. 2003, 10, 1258–1267.

    Article  Google Scholar 

  65. Gaplovsky, M.; Il’ichev, Y. V.; Kamdzhilov, Y.; Kombarova, S. V.; Mac, M.; Schwörer, M. A.; Wirz, J. Photochemical reaction mechanisms of 2-nitrobenzyl compounds: 2-Nitrobenzyl alcohols form 2-nitroso hydrates by dual proton transfer. Photochem. Photobiol. Sci. 2005, 4, 33–42.

    Article  Google Scholar 

  66. Jasinski, D. L.; Yin, H. R.; Li, Z. F.; Guo, P. X. The hydrophobic effect from conjugated chemicals or drugs on in vivo biodistribution of RNA nanoparticles. Hum. Gene Ther., in press, DOI: 10.1089/hum.2017.054.

  67. Afonin, K. A.; Bindewald, E.; Yaghoubian, A. J.; Voss, N.; Jacovetty, E.; Shapiro, B. A.; Jaeger, L. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat. Nanotechnol. 2010, 5, 676–682.

    Article  Google Scholar 

  68. Pi, F.; Binzel, D.; Lee, T. J.; Li, Z.; Sun, M.; Rychahou, P.; Li, H.; Haque, F.; Wang, S.; Croce, C. M. et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol. 2018, 13, 8.

    Article  Google Scholar 

Download references

Acknowledgements

The research in P. G.’s lab was supported by NIH grants R01EB019036, R01CA186100 and U01CA207946 to Peixuan Guo. The cryo-EM work was supported by NIH grants P41GM103832 (W. C.) and P50 GM103297 (W. C.). P. G.’s Sylvan G. Frank Endowed Chair position in Pharmaceutics and Drug Delivery is funded by the CM Chen Foundation. We would like to thank Dr. Farzin Haque and Dr. Daniel Jasinski for helpful discussions. We also would like to thank Dr. Yi Shu for synthesis of paclitaxel-N3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peixuan Guo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Li, H., Zhang, K. et al. Photo-controlled release of paclitaxel and model drugs from RNA pyramids. Nano Res. 12, 41–48 (2019). https://doi.org/10.1007/s12274-018-2174-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2174-x

Keywords

Navigation