Skip to main content
Log in

Strategies to improve micelle stability for drug delivery

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Micelles have been studied as drug delivery carriers for decades. Their use can potentially result in high drug accumulation at the target site through the enhanced permeability and retention effect. Nevertheless, the lack of stability of micelles in the physiological environment limits their efficacy as a drug carrier. In particular, micelles tend to disassociate and prematurely release the encapsulated drugs, lowering delivery efficacy and creating toxicity concerns. Many efforts to enhance the stability of micelles have focused mainly on decreasing the critical micelle forming concentration and improving blood circulation. Herein, we review different strategies including crosslinking and non-crosslinking approaches designed to stabilize micelles and offer perspectives on future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verma, G.; Hassan, P. Self assembled materials: Design strategies and drug delivery perspectives. Phys. Chem. Chem. Phys. 2013, 15, 17016–17028.

    Google Scholar 

  2. Kamaly, N.; Xiao, Z. Y.; Valencia, P. M.; Radovic–Moreno, A. F.; Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev. 2012, 41, 2971–3010.

    Google Scholar 

  3. Service, R. F. Nanoparticle trojan horses gallop from the lab into the clinic. Science 2010, 330, 314–315.

    Google Scholar 

  4. Zhang, L.; Gu, F. X.; Chan, J. M.; Wang, A. Z.; Langer, R. S.; Farokhzad, O. C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Therapeut. 2008, 83, 761–769.

    Google Scholar 

  5. Service, R. F. Nanotechnology takes aim at cancer. Science 2005, 310, 1132–1134.

    Google Scholar 

  6. Yoo, J. W.; Irvine, D. J.; Discher, D. E.; Mitragotri, S. Bio–inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10, 521–535.

    Google Scholar 

  7. Scheinberg, D. A.; Villa, C. H.; Escorcia, F. E.; McDevitt, M. R. Conscripts of the infinite armada: Systemic cancer therapy using nanomaterials. Nat. Rev. Clin. Oncol. 2010, 7, 266–276.

    Google Scholar 

  8. Petros, R. A.; De Simone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627.

    Google Scholar 

  9. Kim, S.; Kim, J. H.; Jeon, O.; Kwon, I. C.; Park, K. Engineered polymers for advanced drug delivery. Eur. J. Pharm. Biopharm. 2009, 71, 420–430.

    Google Scholar 

  10. Guo, S. T.; Huang, L. Nanoparticles containing insoluble drug for cancer therapy. Biotechnol. Adv. 2014, 32, 778–788.

    Google Scholar 

  11. Guo, S. T.; Miao, L.; Wang, Y. H.; Huang, L. Unmodified drug used as a material to construct nanoparticles: Delivery of cisplatin for enhanced anti–cancer therapy. J. Control. Release 2014, 174, 137–142.

    Google Scholar 

  12. Tong, R.; Tang, L.; Ma, L.; Tu, C. L.; Baumgartner, R.; Cheng, J. J. Smart chemistry in polymeric nanomedicine. Chem. Soc. Rev. 2014, 43, 6982–7012.

    Google Scholar 

  13. Hu, C. M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane–camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985.

    Google Scholar 

  14. Kulkarni, V. S.; Shaw, C. Chapter 2–Surfactants, lipids, and surface chemistry. In Essential Chemistry for Formulators of Semisolid and Liquid Dosages. V. S. Kulkarni; C. Shaw, Eds.; Academic Press: Boston, 2016; pp 5–19.

    Google Scholar 

  15. Vert, M.; Doi, Y.; Hellwich, K. H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377–410.

    Google Scholar 

  16. Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M. et al. Accumulation of sub–100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011, 6, 815–823.

    Google Scholar 

  17. Feng, X.; Wang, C. X.; Lin, B. R.; Xu, F. Methoxy poly(ethylene glycol)–conjugated linoleic acid polymeric micelles for paclitaxel delivery. Colloid J. 2006, 68, 779–783.

    Google Scholar 

  18. Kim, S.; Shi, Y. Z.; Kim, J. Y.; Park, K.; Cheng, J. X. Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivo stability, and micelle–cell interaction. Expert Opin. Drug Deliv. 2010, 7, 49–62.

    Google Scholar 

  19. Rösler, A.; Vandermeulen, G. W. M.; Klok, H. A. Advanced drug delivery devices via self–assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 2001, 53, 95–108.

    Google Scholar 

  20. Alibolandi, M.; Ramezani, M.; Abnous, K.; Sadeghi, F.; Hadizadeh, F. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs. J. Nanopart. Res. 2015, 17, 76.

    Google Scholar 

  21. Muthu, M. S.; Kulkarni, S. A.; Liu, Y. T.; Feng, S. S. Development of docetaxel–loaded vitamin E TPGS micelles: Formulation optimization, effects on brain cancer cells and biodistribution in rats. Nanomedicine 2012, 7, 353–364.

    Google Scholar 

  22. Fukushima, S.; Miyata, K.; Nishiyama, N.; Kanayama, N.; Yamasaki, Y.; Kataoka, K. PEGylated polyplex micelles from triblock catiomers with spatially ordered layering of condensed pDNA and buffering units for enhanced intracellular gene delivery. J. Am. Chem. Soc. 2005, 127, 2810–2811.

    Google Scholar 

  23. O’Reilly, R. K.; Hawker, C. J.; Wooley, K. L. Cross–linked block copolymer micelles: Functional nanostructures of great potential and versatility. Chem. Soc. Rev. 2006, 35, 1068–1083.

    Google Scholar 

  24. Fox, M. E.; Szoka, F. C.; Fréchet, J. M. J. Soluble polymer carriers for the treatment of cancer: The importance of molecular architecture. Acc. Chem. Res. 2009, 42, 1141–1151.

    Google Scholar 

  25. Venkatachalam, M. A.; Rennke, H. G. The structural and molecular basis of glomerular filtration. Circul. Res. 1978, 43, 337–347.

    Google Scholar 

  26. Jain, R. K. Transport of molecules across tumor vasculature. Cancer Metast. Rev. 1987, 6, 559–593.

    Google Scholar 

  27. Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmaceutics 2008, 5, 505–515.

    Google Scholar 

  28. Owens, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93–102.

    Google Scholar 

  29. Vonarbourg, A.; Passirani, C.; Saulnier, P.; Benoit, J. P. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 2006, 27, 4356–4373.

    Google Scholar 

  30. Moghimi, S. M.; Hunter, A. C.; Murray, J. C. Long–circulating and target–specific nanoparticles: Theory to practice. Pharmacol. Rev. 2001, 53, 283–318.

    Google Scholar 

  31. Tang, L.; Yang, X. J.; Yin, Q.; Cai, K. M.; Wang, H.; Chaudhury, I.; Yao, C.; Zhou, Q.; Kwon, M.; Hartman, J. A. et al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl. Acad. Sci. USA 2014, 111, 15344–15349.

    Google Scholar 

  32. Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanoparticle–mediated cellular response is size–dependent. Nat. Nanotechnol. 2008, 3, 145–150.

    Google Scholar 

  33. Duncan, R.; Sat, Y. N. Tumor targeting by enhanced permeability and retention (EPR) effect. Ann. Oncol. 1998, 9, 39.

    Google Scholar 

  34. Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 2000, 65, 271–284.

    Google Scholar 

  35. Stirland, D. L.; Nichols, J. W.; Miura, S.; Bae, Y. H. Mind the gap: A survey of how cancer drug carriers are susceptible to the gap between research and practice. J. Control. Release 2013, 172, 1045–1064.

    Google Scholar 

  36. http://www.doxil.com/doxil–supply–shortage.

  37. Lamb, M.; Laugenour, K.; Liang, O. W.; Alexander, M.; Foster, C. E. I.; Lakey, J. R. T. In vitro maturation of viable islets from partially digested young pig pancreas. Cell Transplant. 2014, 23, 263–272.

    Google Scholar 

  38. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    Google Scholar 

  39. Gao, Y.; Chen, L. L.; Gu, W. W.; Xi, Y.; Lin, L. P.; Li, Y. P. Targeted nanoassembly loaded with docetaxel improves intracellular drug delivery and efficacy in murine breast cancer model. Mol. Pharmaceutics 2008, 5, 1044–1054.

    Google Scholar 

  40. Feng, L.; Mumper, R. J. A critical review of lipid–based nanoparticles for taxane delivery. Cancer Lett. 2013, 334, 157–175.

    Google Scholar 

  41. Talelli, M.; Barz, M.; Rijcken, C. J. F.; Kiessling, F.; Hennink, W. E.; Lammers, T. Core–crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation. Nano Today 2015, 10, 93–117.

    Google Scholar 

  42. Dominguez, A.; Fernandez, A.; Gonzalez, N.; Iglesias, E.; Montenegro, L. Determination of critical micelle concentration of some surfactants by three techniques. J. Chem. Educ. 1997, 74, 1227.

    Google Scholar 

  43. Al–Soufi, W.; Piñeiro, L.; Novo, M. A model for monomer and micellar concentrations in surfactant solutions: Application to conductivity, NMR, diffusion, and surface tension data. J. Colloid Interface Sci. 2012, 370, 102–110.

    Google Scholar 

  44. Moroi, Y. Micelles: Theoretical and Applied Aspects; Springer Science & Business Media: New York, 1992.

    Google Scholar 

  45. Olesen, N. E.; Westh, P.; Holm, R. Determination of thermodynamic potentials and the aggregation number for micelles with the mass–action model by isothermal titration calorimetry: A case study on bile salts. J. Colloid Interface Sci. 2015, 453, 79–89.

    Google Scholar 

  46. Bouchemal, K.; Agnely, F.; Koffi, A.; Djabourov, M.; Ponchel, G. What can isothermal titration microcalorimetry experiments tell us about the self–organization of surfactants into micelles? J. Mol. Recogn. 2010, 23, 335–342.

    Google Scholar 

  47. Lu, J.; Owen, S. C.; Shoichet, M. S. Stability of self–assembled polymeric micelles in serum. Macromolecules 2011, 44, 6002–6008.

    Google Scholar 

  48. Chen, H. T.; Kim, S.; He, W.; Wang, H. F.; Low, P. S.; Park, K.; Cheng, J. X. Fast release of lipophilic agents from circulating PEG–PDLLA micelles revealed by in vivo Förster resonance energy transfer imaging. Langmuir 2008, 24, 5213–5217.

    Google Scholar 

  49. Chen, H. T.; Kim, S.; Li, L.; Wang, S. Y.; Park, K.; Cheng, J. X. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging. Proc. Natl. Acad. Sci. USA 2008, 105, 6596–6601.

    Google Scholar 

  50. Xu, W.; Ling, P. X.; Zhang, T. M. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water–soluble drugs. J. Drug Deliv. 2013, 2013, 340315. DOI: 10.1155/2013/340315.

    Google Scholar 

  51. Topel, Ö.; Çakir, B. A.; Budama, L.; Hoda, N. Determination of critical micelle concentration of polybutadiene–blockpoly( ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering. J. Mol. Liq. 2013, 177, 40–43.

    Google Scholar 

  52. Adams, M. L.; Lavasanifar, A.; Kwon, G. S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 2003, 92, 1343–1355.

    Google Scholar 

  53. Avgoustakis, K. Pegylated poly(lactide) and poly(lactideco–glycolide) nanoparticles: Preparation, properties and possible applications in drug delivery. Curr. Drug Deliv. 2004, 1, 321–333.

    Google Scholar 

  54. Cheng, J. J.; Teply, B. A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F. X.; Levy–Nissenbaum, E.; Radovic–Moreno, A. F.; Langer, R.; Farokhzad, O. C. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007, 28, 869–876.

    Google Scholar 

  55. Astete, C. E.; Sabliov, C. M. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 2006, 17, 247–289.

    Google Scholar 

  56. Önyüksel, H.; Jeon, E.; Rubinstein, I. Nanomicellar paclitaxel increases cytotoxicity of multidrug resistant breast cancer cells. Cancer Lett. 2009, 274, 327–330.

    Google Scholar 

  57. Thurmond, K. B.; Kowalewski, T.; Wooley, K. L. Watersoluble knedel–like structures: The preparation of shellcross–linked small particles. J. Am. Chem. Soc. 1996, 118, 7239–7240.

    Google Scholar 

  58. Bütün, V.; Billingham, N. C.; Armes, S. P. Synthesis of shell cross–linked micelles with tunable hydrophilic/hydrophobic cores. J. Am. Chem. Soc. 1998, 120, 12135–12136.

    Google Scholar 

  59. Bütün, V.; Wang, X. S.; de Paz Báñez, M. V.; Robinson, K. L.; Billingham, N. C.; Armes, S. P.; Tuzar, Z. Synthesis of shell cross–linked micelles at high solids in aqueous media. Macromolecules 2000, 33, 1–3.

    Google Scholar 

  60. Talelli, M.; Iman, M.; Varkouhi, A. K.; Rijcken, C. J. F.; Schiffelers, R. M.; Etrych, T.; Ulbrich, K.; van Nostrum, C. F.; Lammers, T.; Storm, G. et al. Core–crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials 2010, 31, 7797–7804.

    Google Scholar 

  61. Ding, J. X.; Zhuang, X. L.; Xiao, C. S.; Cheng, Y. L.; Zhao, L.; He, C. L.; Tang, Z. H.; Chen, X. S. Preparation of photo–cross–linked pH–responsive polypeptide nanogels as potential carriers for controlled drug delivery. J. Mater. Chem. 2011, 21, 11383–11391.

    Google Scholar 

  62. Jin, Q.; Liu, X. S.; Liu, G. Y.; Ji, J. Fabrication of core or shell reversibly photo cross–linked micelles and nanogels from double responsive water–soluble block copolymers. Polymer 2010, 51, 1311–1319.

    Google Scholar 

  63. Ding, J. F.; Liu, G. J. Polystyrene–block–poly(2–cinnamoylethyl methacrylate) nanospheres with cross–linked shells. Macromolecules 1998, 31, 6554–6558.

    Google Scholar 

  64. Cohen, M. D.; Schmidt, G. M. J. Topochemistry. Part I. A survey. J. Chem. Soc. 1964, 1996–2000.

    Google Scholar 

  65. Schmidt, G. M. J. Topochemistry. Part III. The crystal chemistry of some trans–cinnamic acids. J. Chem. Soc. 1964, 2014–2021.

    Google Scholar 

  66. Yusa, S. I.; Sugahara, M.; Endo, T.; Morishima, Y. Preparation and characterization of a pH–responsive nanogel based on a photo–cross–linked micelle formed from block copolymers with controlled structure. Langmuir 2009, 25, 5258–5265.

    Google Scholar 

  67. Lendlein, A.; Jiang, H. Y.; Jünger, O.; Langer, R. Lightinduced shape–memory polymers. Nature 2005, 434, 879–882.

    Google Scholar 

  68. Xu, L.; Zhang, W. Y.; Cai, H. B.; Liu, F.; Wang, Y.; Gao, Y.; Zhang, W. A. Photocontrollable release and enhancement of photodynamic therapy based on host–guest supramolecular amphiphiles. J. Mater. Chem. B 2015, 3, 7417–7426.

    Google Scholar 

  69. Deepagan, V. G.; Kwon, S.; You, D. G.; Nguyen, V. Q.; Um, W.; Ko, H.; Lee, H.; Jo, D. G.; Kang, Y. M.; Park, J. H. In situ diselenide–crosslinked polymeric micelles for ROS–mediated anticancer drug delivery. Biomaterials 2016, 103, 56–66.

    Google Scholar 

  70. Zhai, S. D.; Hu, X. L.; Hu, Y. J.; Wu, B. Y.; Xing, D. Visible light–induced crosslinking and physiological stabilization of diselenide–rich nanoparticles for redox–responsive drug release and combination chemotherapy. Biomaterials 2017, 121, 41–54.

    Google Scholar 

  71. Zhang, Q.; Remsen, E. E.; Wooley, K. L. Shell cross–linked nanoparticles containing hydrolytically degradable, crystalline core domains. J. Am. Chem. Soc. 2000, 122, 3642–3651.

    Google Scholar 

  72. Huang, H. Y.; Kowalewski, T.; Remsen, E. E.; Gertzmann, R.; Wooley, K. L. Hydrogel–coated glassy nanospheres: A novel method for the synthesis of shell cross–linked knedels. J. Am. Chem. Soc. 1997, 119, 11653–11659.

    Google Scholar 

  73. Li, Y. T.; Lokitz, B. S.; McCormick, C. L. RAFT synthesis of a thermally responsive ABC triblock copolymer incorporating N–acryloxysuccinimide for facile in situ formation of shell cross–linked micelles in aqueous media. Macromolecules 2006, 39, 81–89.

    Google Scholar 

  74. Rodríguez–Hernández, J.; Babin, J.; Zappone, B.; Lecommandoux, S. Preparation of shell cross–linked nano–objects from hybrid–peptide block copolymers. Biomacromolecules 2005, 6, 2213–2220.

    Google Scholar 

  75. Pilon, L. N.; Armes, S. P.; Findlay, P.; Rannard, S. P. Synthesis and characterization of shell cross–linked micelles with hydroxy–functional coronas: A pragmatic alternative to dendrimers? Langmuir 2005, 21, 3808–3813.

    Google Scholar 

  76. Liu, S. Y.; Weaver, J. V. M.; Save, M.; Armes, S. P. Synthesis of pH–responsive shell cross–linked micelles and their use as nanoreactors for the preparation of gold nanoparticles. Langmuir 2002, 18, 8350–8357.

    Google Scholar 

  77. Zhang, J. Y.; Jiang, X. Z.; Zhang, Y. F.; Li, Y. T.; Liu, S. Y. Facile fabrication of reversible core cross–linked micelles possessing thermosensitive swellability. Macromolecules 2007, 40, 9125–9132.

    Google Scholar 

  78. Duong, H. T. T.; Nguyen, T. L. U.; Stenzel, M. H. Micelles with surface conjugated RGD peptide and crosslinked polyurea core via RAFT polymerization. Polym. Chem. 2010, 1, 171–182.

    Google Scholar 

  79. Huang, C. Q.; Hong, C. Y.; Pan, C. Y. Formation of flower–like aggregates from self–assembling of micelles with PEO shells and cross–linked polyacrylamide cores. Chin. J. Polym. Sci. 2008, 26, 341–352.

    Google Scholar 

  80. Shim, M. S.; Kwon, Y. J. Acid–transforming polypeptide micelles for targeted nonviral gene delivery. Biomaterials 2010, 31, 3404–3413.

    Google Scholar 

  81. Kim, J. S.; Youk, J. H. Preparation of core cross–linked micelles using a photo–cross–linking agent. Polymer 2009, 50, 2204–2208.

    Google Scholar 

  82. Joralemon, M. J.; O’Reilly, R. K.; Hawker, C. J.; Wooley, K. L. Shell click–crosslinked (SCC) nanoparticles: A new methodology for synthesis and orthogonal functionalization. J. Am. Chem. Soc. 2005, 127, 16892–16899.

    Google Scholar 

  83. Zhao, Y. Surface–cross–linked micelles as multifunctionalized organic nanoparticles for controlled release, light harvesting, and catalysis. Langmuir 2016, 32, 5703–5713.

    Google Scholar 

  84. Dai, Y.; Wang, H. Q.; Zhang, X. J. Reduction–responsive interlayer–crosslinked micelles prepared from star–shaped copolymer via click chemistry for drug controlled release. J. Nanopart. Res. 2017, 19, 383.

    Google Scholar 

  85. Withey, A. B.; Chen, G. J.; Nguyen, T. L. U.; Stenzel, M. H. Macromolecular cobalt carbonyl complexes encapsulated in a click–cross–linked micelle structure as a nanoparticle to deliver cobalt pharmaceuticals. Biomacromolecules 2009, 10, 3215–3226.

    Google Scholar 

  86. Jiang, X. Z.; Zhang, J. Y.; Zhou, Y. M.; Xu, J.; Liu, S. Y. Facile preparation of core–crosslinked micelles from azidecontaining thermoresponsive double hydrophilic diblock copolymer via click chemistry. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 860–871.

    Google Scholar 

  87. Du, J. Z.; Chen, Y. M.; Zhang, Y. H.; Han, C. C.; Fischer, K.; Schmidt, M. Organic/inorganic hybrid vesicles based on a reactive block copolymer. J. Am. Chem. Soc. 2003, 125, 14710–14711.

    Google Scholar 

  88. Du, J. Z.; Armes, S. P. pH–responsive vesicles based on a hydrolytically self–cross–linkable copolymer. J. Am. Chem. Soc. 2005, 127, 12800–12801.

    Google Scholar 

  89. Zhang, Y. F.; Gu, W. Y.; Xu, H. X.; Liu, S. Y. Facile fabrication of hybrid nanoparticles surface grafted with multi–responsive polymer brushes via block copolymer micellization and self–catalyzed core gelation. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 2379–2389.

    Google Scholar 

  90. Matsumoto, K.; Hasegawa, H.; Matsuoka, H. Synthesis of sodium–polystyrenesulfonate–grafted nanoparticles by corecross–linking of block copolymer micelles. Tetrahedron 2004, 60, 7197–7204.

    Google Scholar 

  91. Delgado, P. A.; Matloka, P.; Zuluaga, F.; Wagener, K. B. Synthesis and thermal crosslinking of carbosiloxane and oligo(oxyethylene) polymers. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 431–440.

    Google Scholar 

  92. Chen, W. X.; Cheng, Y. F.; Wang, B. H. Dual–responsive boronate crosslinked micelles for targeted drug delivery. Angew. Chem., Int. Ed. 2012, 51, 5293–5295.

    Google Scholar 

  93. Li, Y. P.; Xiao, W. W.; Xiao, K.; Berti, L.; Luo, J. T.; Tseng, H. P.; Fung, G.; Lam, K. S. Well–defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis–diols. Angew. Chem., Int. Ed. 2012, 51, 2864–2869.

    Google Scholar 

  94. Lin, V. S.; Dickinson, B. C.; Chang, C. J. Chapter two–Boronate–based fluorescent probes: Imaging hydrogen peroxide in living systems. Methods Enzymol. 2013, 526, 19–43.

    Google Scholar 

  95. Rhee, S. G. H2O2, a necessary evil for cell signaling. Science 2006, 312, 1882–1883.

    Google Scholar 

  96. Priftis, D.; Leon, L.; Song, Z. Y.; Perry, S. L.; Margossian, K. O.; Tropnikova, A.; Cheng, J. J.; Tirrell, M. Self–assembly of α–helical polypeptides driven by complex coacervation. Angew. Chem., Int. Ed. 2015, 54, 11128–11132.

    Google Scholar 

  97. Oberoi, H. S.; Laquer, F. C.; Marky, L. A.; Kabanov, A. V.; Bronich, T. K. Core cross–linked block ionomer micelles as pH–responsive carriers for cis–diamminedichloroplatinum(II). J. Control. Release 2011, 153, 64–72.

    Google Scholar 

  98. Harada, A.; Kataoka, K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositelycharged block copolymers with poly(ethylene glycol) segments. Macromolecules 1995, 28, 5294–5299.

    Google Scholar 

  99. Bütün, V.; Lowe, A. B.; Billingham, N. C.; Armes, S. P. Synthesis of zwitterionic shell cross–linked micelles. J. Am. Chem. Soc. 1999, 121, 4288–4289.

    Google Scholar 

  100. Zhang, X. H.; Ai, C. J.; Ma, J. H.; Xu, J.; Yang, S. G. Synthesis of zwitterionic shell cross–linked micelles with pH–dependent hydrophilicity. J. Colloid Interface Sci. 2011, 356, 24–30.

    Google Scholar 

  101. Dai, Y.; Wang, H. Q.; Zhang, X. J. Polyion complex micelles prepared by self–assembly of block–graft polycation and hyperbranched polyanion. J. Nanopart. Res. 2017, 19, 298.

    Google Scholar 

  102. Ueda, T.; Oshida, H.; Kurita, K.; Ishihara, K.; Nakabayashi, N. Preparation of 2–methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym. J. 1992, 24, 1259–1269.

    Google Scholar 

  103. Rungsardthong, U.; Deshpande, M.; Bailey, L.; Vamvakaki, M.; Armes, S. P.; Garnett, M. C.; Stolnik, S. Copolymers of amine methacrylate with poly(ethylene glycol) as vectors for gene therapy. J. Control. Release 2001, 73, 359–380.

    Google Scholar 

  104. Bronich, T. K.; Keifer, P. A.; Shlyakhtenko, L. S.; Kabanov, A. V. Polymer micelle with cross–linked ionic core. J. Am. Chem. Soc. 2005, 127, 8236–8237.

    Google Scholar 

  105. Shi, Y.; van Steenbergen, M. J.; Teunissen, E. A.; Novo, L.; Gradmann, S.; Baldus, M.; van Nostrum, C. F.; Hennink, W. E. Π–Π stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs. Biomacromolecules 2013, 14, 1826–1837.

    Google Scholar 

  106. Shi, Y.; van der Meel, R.; Theek, B.; Oude Blenke, E.; Pieters, E. H. E.; Fens, M. H. A. M.; Ehling, J.; Schiffelers, R. M.; Storm, G.; van Nostrum, C. F. et al. Complete regression of xenograft tumors upon targeted delivery of paclitaxel via Π–Π stacking stabilized polymeric micelles. ACS Nano 2015, 9, 3740–3752.

    Google Scholar 

  107. Kim, S. H.; Tan, J. P. K.; Nederberg, F.; Fukushima, K.; Colson, J.; Yang, C.; Nelson, A.; Yang, Y. Y.; Hedrick, J. L. Hydrogen bonding–enhanced micelle assemblies for drug delivery. Biomaterials 2010, 31, 8063–8071.

    Google Scholar 

  108. Yang, C.; Ebrahim Attia, A. B.; Tan, J. P. K.; Ke, X. Y.; Gao, S. J.; Hedrick, J. L.; Yang, Y. Y. The role of non–covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles. Biomaterials 2012, 33, 2971–2979.

    Google Scholar 

  109. Loh, X. J. Supramolecular host–guest polymeric materials for biomedical applications. Mater. Horiz. 2014, 1, 185–195.

    Google Scholar 

  110. Wang, J.; Jiang, M. Polymeric self–assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation. J. Am. Chem. Soc. 2006, 128, 3703–3708.

    Google Scholar 

  111. Dong, X. P.; Guo, X. L.; Liu, G. Q.; Fan, A. P.; Wang, Z.; Zhao, Y. J. When self–assembly meets topology: An enhanced micelle stability. Chem. Commun. 2017, 53, 3822–3825.

    Google Scholar 

  112. Attwood, D.; Elworthy, P. H.; Kayne, S. B. Membrane osmometry of aqueous micellar solutions of pure nonionic and ionic surfactants. J. Phys. Chem. 1970, 74, 3529–3534.

    Google Scholar 

  113. Glavas, L.; Olsén, P.; Odelius, K.; Albertsson, A. C. Achieving micelle control through core crystallinity. Biomacromolecules 2013, 14, 4150–4156.

    Google Scholar 

  114. Li, F.; Danquah, M.; Mahato, R. I. Synthesis and characterization of amphiphilic lipopolymers for micellar drug delivery. Biomacromolecules 2010, 11, 2610–2620.

    Google Scholar 

  115. Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H. B. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014, 4, 17028–17038.

    Google Scholar 

  116. Lavasanifar, A.; Samuel, J.; Kwon, G. S. The effect of alkyl core structure on micellar properties of poly(ethylene oxide)–block–poly(L–aspartamide) derivatives. Colloids Surf. B: Biointerfaces 2001, 22, 115–126.

    Google Scholar 

  117. Falamarzian, A.; Lavasanifar, A. Chemical modification of hydrophobic block in poly(ethylene oxide) poly (caprolactone) based nanocarriers: Effect on the solubilization and hemolytic activity of amphotericin B. Macromol. Biosci. 2010, 10, 648–656.

    Google Scholar 

  118. Choi, J.; Moquin, A.; Bomal, E.; Na, L.; Maysinger, D.; Kakkar, A. Telodendrimers for physical encapsulation and covalent linking of individual or combined therapeutics. Mol. Pharmaceutics 2017, 14, 2607–2615.

    Google Scholar 

  119. Brinkman, A. M.; Chen, G. J.; Wang, Y. D.; Hedman, C. J.; Sherer, N. M.; Havighurst, T. C.; Gong, S. Q.; Xu, W. Aminoflavone–loaded EGFR–targeted unimolecular micelle nanoparticles exhibit anti–cancer effects in triple negative breast cancer. Biomaterials 2016, 101, 20–31.

    Google Scholar 

  120. Chen, G. J.; Wang, L. W.; Cordie, T.; Vokoun, C.; Eliceiri, K. W.; Gong, S. Q. Multi–functional self–fluorescent unimolecular micelles for tumor–targeted drug delivery and bioimaging. Biomaterials 2015, 47, 41–50.

    Google Scholar 

  121. Lu, Y.; Yue, Z. G.; Xie, J. B.; Wang, W.; Zhu, H.; Zhang, E. S.; Cao, Z. Q. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat. Biomed. Eng. 2018, 1, 318–325.

    Google Scholar 

  122. Cao, Z. Q.; Zhang, L.; Jiang, S. Y. Superhydrophilic zwitterionic polymers stabilize liposomes. Langmuir 2012, 28, 11625–11632.

    Google Scholar 

  123. Cao, Z. Q.; Jiang, S. Y. Super–hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non–ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today 2012, 7, 404–413.

    Google Scholar 

  124. Yusa, S. I.; Fukuda, K.; Yamamoto, T.; Ishihara, K.; Morishima, Y. Synthesis of well–defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules 2005, 6, 663–670.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (DMR-1410853) and National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (DP2DK111910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhang, E., Yang, J. et al. Strategies to improve micelle stability for drug delivery. Nano Res. 11, 4985–4998 (2018). https://doi.org/10.1007/s12274-018-2152-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2152-3

Keywords

Navigation