Skip to main content
Log in

Development of optical nanoprobes for molecular imaging of reactive oxygen and nitrogen species

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Reactive oxygen and nitrogen species (RONS) play important roles in cell signal transduction. However, overproduction of RONS is associated with a series of pathological processes and may disrupt cellular homeostasis, causing oxidative and nitrosative stress. Accurate methods to selectively and specifically monitor RONS in living systems are required to further elucidate the biological functions of these species. Optical imaging possesses high sensitivity, high spatiotemporal resolution, and real-time imaging capability. These qualities are advantageous for the detection of RONS in living systems. This review summarizes the development of optical nanoprobes with near-infrared (NIR) fluorescent, upconversion luminescent, chemiluminescent, or photoacoustic signals for molecular imaging of RONS in living systems. In this review, we discuss the design principles and advantages of RONS-responsive activatable nanoprobes, as well as applications of these optical imaging modalities in different disease models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dickinson, B. C.; Chang, C. J. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 2011, 7, 504–511.

    Google Scholar 

  2. D’Autréaux, B.; Toledano, M. B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007, 8, 813–824.

    Google Scholar 

  3. Nathan, C.; Cunningham–Bussel, A. Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013, 13, 349–361.

    Google Scholar 

  4. Weseler, A. R.; Bast, A. Oxidative stress and vascular function: Implications for pharmacologic treatments. Curr. Hypertens. Rep. 2010, 12, 154–161.

    Google Scholar 

  5. Newsholme, P.; Cruzat, V. F.; Keane, K. N.; Carlessi, R.; de Bittencourt, P. I. H., Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J. 2016, 473, 4527–4550.

    Google Scholar 

  6. Thornton, C.; Baburamani, A. A.; Kichev, A.; Hagberg, H. Oxidative stress and endoplasmic reticulum (ER) stress in the development of neonatal hypoxic–ischaemic brain injury. Biochem. Soc. Trans. 2017, 45, 1067–1076.

    Google Scholar 

  7. Wen, T.; Zhang, H.; Chong, Y.; Wamer, W. G.; Yin, J.–J.; Wu, X. C. Probing hydroxyl radical generation from H2O2 upon plasmon excitation of gold nanorods using electron spin resonance: Molecular oxygen–mediated activation. Nano Res. 2016, 9, 1663–1673.

    Google Scholar 

  8. Pravalika, K.; Sarmah, D.; Kaur, H.; Wanve, M.; Saraf, J.; Kalia, K.; Borah, A.; Yavagal, D. R.; Dave, K. R.; Bhattacharya, P. Myeloperoxidase and Neurological disorder: A crosstalk. ACS Chem. Neurosci. 2018, 9, 421–430.

    Google Scholar 

  9. Lundberg, J. O.; Gladwin, M. T.; Weitzberg, E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat. Rev. Drug Discov. 2015, 14, 623–641.

    Google Scholar 

  10. Schieber, M.; Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462.

    Google Scholar 

  11. Weidinger, A.; Kozlov, A. V. Biological activities of reactive oxygen and nitrogen species: Oxidative stress versus signal transduction. Biomolecules 2015, 5, 472–484.

    Google Scholar 

  12. Gonçalves, N. P.; Vægter, C. B.; Andersen, H.; Østergaard, L.; Calcutt, N. A.; Jensen, T. S. Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat. Rev. Neurol. 2017, 13, 135–147.

    Google Scholar 

  13. Rani, V.; Deep, G.; Singh, R. K.; Palle, K.; Yadav, U. C. S. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016, 148, 183–193.

    Google Scholar 

  14. Gaki, G. S.; Papavassiliou, A. G. Oxidative stress–induced signaling pathways implicated in the pathogenesis of Parkinson’s disease. Neuromol. Med. 2014, 16, 217–230.

    Google Scholar 

  15. Sabharwal, S. S.; Schumacker, P. T. Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles' heel? Nat. Rev. Cancer 2014, 14, 709–721.

    Google Scholar 

  16. Van Gaal, L. F.; Mertens, I. L.; De Block, C. E. Mechanisms linking obesity with cardiovascular disease. Nature 2006, 444, 875–880.

    Google Scholar 

  17. Wojtala, A.; Bonora, M.; Malinska, D.; Pinton, P.; Duszynski, J.; Wieckowski, M. R. Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzymol. 2014, 542, 243–262.

    Google Scholar 

  18. Giraldo, J. P.; Landry, M. P.; Faltermeier, S. M.; McNicholas, T. P.; Iverson, N. M.; Boghossian, A. A.; Reuel, N. F.; Hilmer, A. J.; Sen, F.; Brew, J. A. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 2014, 13, 400–408.

    Google Scholar 

  19. Chen, G. Y.; Nuñez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837.

    Google Scholar 

  20. Heller, D. A.; Jin, H.; Martinez, B. M.; Patel, D.; Miller, B. M.; Yeung, T.–K.; Jena, P. V.; Höbartner, C.; Ha, T.; Silverman, S. K. et al. Multimodal optical sensing and analyte specificity using single–walled carbon nanotubes. Nat. Nanotechnol. 2009, 4, 114–120.

    Google Scholar 

  21. Miller, E. W.; Tulyathan, O.; Isacoff, E. Y.; Chang, C. J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nat. Chem. Biol. 2007, 3, 263–267.

    Google Scholar 

  22. Chan, J.; Dodani, S. C.; Chang, C. J. Reaction–based smallmolecule fluorescent probes for chemoselective bioimaging. Nat. Chem. 2012, 4, 973–984.

    Google Scholar 

  23. Dickinson, B. C.; Srikun, D.; Chang, C. J. Mitochondrialtargeted fluorescent probes for reactive oxygen species. Curr. Opin. Chem. Biol. 2010, 14, 50–56.

    Google Scholar 

  24. Hyman, L. M.; Franz, K. J. Probing oxidative stress: Small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols. Coordin. Chem. Rev. 2012, 256, 2333–2356.

    Google Scholar 

  25. Yuan, L.; Lin, W. Y.; Zheng, K. B.; Zhu, S. S. FRET–based small–molecule fluorescent probes: Rational design and bioimaging applications. Acc. Chem. Res. 2013, 46, 1462–1473.

    Google Scholar 

  26. Urano, Y. Novel live imaging techniques of cellular functions and in vivo tumors based on precise design of small molecule–based “activatable” fluorescence probes. Curr. Opin. Chem. Biol. 2012, 16, 602–608.

    Google Scholar 

  27. Chen, X. Q.; Wang, F.; Hyun, J. Y.; Wei, T. W.; Qiang, J.; Ren, X. T.; Shin, I.; Yoon, J. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 2016, 45, 2976–3016.

    Google Scholar 

  28. Kowada, T.; Maeda, H.; Kikuchi, K. BODIPY–based probes for the fluorescence imaging of biomolecules in living cells. Chem. Soc. Rev. 2015, 44, 4953–4972.

    Google Scholar 

  29. Kim, H. M.; Cho, B. R. Small–molecule two–photon probes for bioimaging applications. Chem. Rev. 2015, 115, 5014–5055.

    Google Scholar 

  30. Smith, A. M.; Duan, H. W.; Mohs, A. M.; Nie, S. M. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 2008, 60, 1226–1240.

    Google Scholar 

  31. Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small–animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.

    Google Scholar 

  32. Koo, H.; Huh, M. S.; Ryu, J. H.; Lee, D.–E.; Sun, I.–C.; Choi, K.; Kim, K.; Kwon, I. C. Nanoprobes for biomedical imaging in living systems. Nano Today 2011, 6, 204–220.

    Google Scholar 

  33. Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 12320–12364.

    Google Scholar 

  34. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    Google Scholar 

  35. Zhen, X.; Tao, Y.; An, Z. F.; Chen, P.; Xu, C. J.; Chen, R. F.; Huang, W.; Pu, K. Y. Ultralong phosphorescence of watersoluble organic nanoparticles for in vivo afterglow imaging. Adv. Mater. 2017, 29, 1606665.

    Google Scholar 

  36. Zhen, X.; Xie, C.; Pu, K. Y. Temperature–correlated afterglow of a semiconducting polymer nanococktail for imaging–guided photothermal therapy. Angew. Chem., Int. Ed. 2018, 57, 3938–3942.

    Google Scholar 

  37. Li, J. C.; Rao, J. H.; Pu, K. Y. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 2018, 155, 217–235.

    Google Scholar 

  38. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    Google Scholar 

  39. Chen, M. J.; Yin, M. Z. Design and development of fluorescent nanostructures for bioimaging. Prog. Polym. Sci. 2014, 39, 365–395.

    Google Scholar 

  40. Wu, C. F.; Hansen, S. J.; Hou, Q.; Yu, J. B.; Zeigler, M.; Jin, Y. H.; Burnham, D. R.; McNeill, J. D.; Olson, J. M.; Chiu, D. T. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem., Int. Ed. 2011, 50, 3430–3434.

    Google Scholar 

  41. Hu, S.–H.; Gao, X. H. Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J. Am. Chem. Soc. 2010, 132, 7234–7237.

    Google Scholar 

  42. Zhou, W.; Gao, X.; Liu, D. B.; Chen, X. Y. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 2015, 115, 10575–10636.

    Google Scholar 

  43. Chan, M.–H.; Lin, H.–M. Preparation and identification of multifunctional mesoporous silica nanoparticles for in vitro and in vivo dual–mode imaging, theranostics, and targeted tracking. Biomaterials 2015, 46, 149–158.

    Google Scholar 

  44. Feng, T.; Ai, X. Z.; An, G. H.; Yang, P. P.; Zhao, Y. L. Charge–convertible carbon dots for imaging–guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 2016, 10, 4410–4420.

    Google Scholar 

  45. Fan, Z.; Sun, L. M.; Huang, Y. J.; Wang, Y. Z.; Zhang, M. J. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real–time monitoring of drug release. Nat. Nanotechnol. 2016, 11, 388–394.

    Google Scholar 

  46. Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 2015, 115, 10530–10574.

    Google Scholar 

  47. Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768.

    Google Scholar 

  48. Lyu, Y.; Pu, K. Y. Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging. Adv. Sci. 2017, 4, 1600481.

    Google Scholar 

  49. Pu, K. Y.; Shuhendler, A. J.; Rao, J. H. Semiconducting polymer nanoprobe for in vivo imaging of reactive oxygen and nitrogen species. Angew. Chem., Int. Ed. 2013, 52, 10325–10329.

    Google Scholar 

  50. Wu, L.; Wu, I.–C.; DuFort, C. C.; Carlson, M. A.; Wu, X.; Chen, L.; Kuo, C.–T.; Qin, Y. L.; Yu, J. B.; Hingorani, S. R. et al. Photostable ratiometric pdot probe for in vitro and in vivo imaging of hypochlorous acid. J. Am. Chem. Soc. 2017, 139, 6911–6918.

    Google Scholar 

  51. Yin, C.; Zhu, H. J.; Xie, C.; Zhang, L.; Chen, P.; Fan, Q. L.; Huang, W.; Pu, K. Y. Organic nanoprobe cocktails for multilocal and multicolor fluorescence imaging of reactive oxygen species. Adv. Funct. Mater. 2017, 27, 1700493.

    Google Scholar 

  52. Ju, J.; Chen, W. In situ growth of surfactant–free gold nanoparticles on nitrogen–doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem. 2015, 87, 1903–1910.

    Google Scholar 

  53. Gao, X.; Ding, C. Q.; Zhu, A. W.; Tian, Y. Carbondot–based ratiometric fluorescent probe for imaging and biosensing of superoxide anion in live cells. Anal. Chem. 2014, 86, 7071–7078.

    Google Scholar 

  54. Xu, H. X.; Suslick, K. S. Water–soluble fluorescent silver nanoclusters. Adv. Mater. 2010, 22, 1078–1082.

    Google Scholar 

  55. Chen, L.–Y.; Wang, C.–W.; Yuan, Z. Q.; Chang, H.–T. Fluorescent gold nanoclusters: Recent advances in sensing and imaging. Anal. Chem. 2015, 87, 216–229.

    Google Scholar 

  56. Chen, T. T.; Hu, Y. H.; Cen, Y.; Chu, X.; Lu, Y. A dualemission fluorescent nanocomplex of gold–cluster–decorated silica particles for live cell imaging of highly reactive oxygen species. J. Am. Chem. Soc. 2013, 135, 11595–11602.

    Google Scholar 

  57. Liu, Q.; Feng, W.; Yang, T. S.; Yi, T.; Li, F. Y. Upconversion luminescence imaging of cells and small animals. Nat. Protoc. 2013, 8, 2033–2044.

    Google Scholar 

  58. Joubert, M.–F. Photon avalanche upconversion in rare earth laser materials. Opt. Mater. 1999, 11, 181–203.

    Google Scholar 

  59. Wang, F.; Banerjee, D.; Liu, Y. S.; Chen, X. Y.; Liu, X. G. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 2010, 135, 1839–1854.

    Google Scholar 

  60. Cheng, L.; Wang, C.; Liu, Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 2013, 5, 23–37.

    Google Scholar 

  61. Park, Y. I.; Lee, K. T.; Suh, Y. D.; Hyeon, T. Upconverting nanoparticles: A versatile platform for wide–field two–photon microscopy and multi–modal in vivo imaging. Chem. Soc. Rev. 2015, 44, 1302–1317.

    Google Scholar 

  62. Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465.

    Google Scholar 

  63. Chen, G. Y.; Ågren, H.; Ohulchanskyy, T. Y.; Prasad, P. N. Light upconverting core–shell nanostructures: Nanophotonic control for emerging applications. Chem. Soc. Rev. 2015, 44, 1680–1713.

    Google Scholar 

  64. Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 2015, 44, 1346–1378.

    Google Scholar 

  65. Liu, X. W.; Deng, R. R.; Zhang, Y. H.; Wang, Y.; Chang, H. J.; Huang, L.; Liu, X. G. Probing the nature of upconversion nanocrystals: Instrumentation matters. Chem. Soc. Rev. 2015, 44, 1479–1508.

    Google Scholar 

  66. Dong, H.; Sun, L.–D.; Yan, C.–H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 2015, 44, 1608–1634.

    Google Scholar 

  67. Peng, J. J.; Xu, W.; Teoh, C. L.; Han, S. Y.; Kim, B.; Samanta, A.; Er, J. C.; Wang, L.; Yuan, L.; Liu, X. G. et al. High–efficiency in vitro and in vivo detection of Zn2+ by dye–assembled upconversion nanoparticles. J. Am. Chem. Soc. 2015, 137, 2336–2342.

    Google Scholar 

  68. Chen, Z. W.; Liu, Z.; Li, Z. H.; Ju, E. G.; Gao, N.; Zhou, L.; Ren, J. S.; Qu, X. G. Upconversion nanoprobes for efficiently in vitro imaging reactive oxygen species and in vivo diagnosing rheumatoid arthritis. Biomaterials 2015, 39, 15–22.

    Google Scholar 

  69. Fan, W. P.; Bu, W. B.; Shen, B.; He, Q. J.; Cui, Z. W.; Liu, Y. Y.; Zheng, X. P.; Zhao, K. L.; Shi, J. L. Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH–/H2O2–responsive UCL imaging and oxygenelevated synergetic therapy. Adv. Mater. 2015, 27, 4155–4161.

    Google Scholar 

  70. Li, Z.; Liang, T.; Lv, S. W.; Zhuang, Q. G.; Liu, Z. H. A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical. J. Am. Chem. Soc. 2015, 137, 11179–11185.

    Google Scholar 

  71. Peng, J. J.; Samanta, A.; Zeng, X.; Han, S. Y.; Wang, L.; Su, D. D.; Loong, D. T. B.; Kang, N. Y.; Park, S. J.; All, A. H. et al. Real–time in vivo hepatotoxicity monitoring through chromophore–conjugated photon–upconverting nanoprobes. Angew. Chem., Int. Ed. 2017, 56, 4165–4169.

    Google Scholar 

  72. Seo, Y. H.; Singh, A.; Cho, H.–J.; Kim, Y.; Heo, J.; Lim, C.–K.; Park, S. Y.; Jang, W.–D.; Kim, S. Rational design for enhancing inflammation–responsive in vivo chemiluminescence via nanophotonic energy relay to near–infrared AIE–active conjugated polymer. Biomaterials 2016, 84, 111–118.

    Google Scholar 

  73. Mao, D.; Wu, W. B.; Ji, S. L.; Chen, C.; Hu, F.; Kong, D. L.; Ding, D.; Liu, B. Chemiluminescence–guided cancer therapy using a chemiexcited photosensitizer. Chem 2017, 3, 991–1007.

    Google Scholar 

  74. Lim, C. K.; Lee, Y. D.; Na, J.; Oh, J. M.; Her, S.; Kim, K.; Choi, K.; Kim, S.; Kwon, I. C. Chemiluminescence–generating nanoreactor formulation for near–infrared imaging of hydrogen peroxide and glucose level in vivo. Adv. Funct. Mater. 2010, 20, 2644–2648.

    Google Scholar 

  75. Lee, D.; Khaja, S.; Velasquez–Castano, J. C.; Dasari, M.; Sun, C.; Petros, J.; Taylor, W. R.; Murthy, N. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat. Mater. 2007, 6, 765–769.

    Google Scholar 

  76. Cho, S.; Hwang, O.; Lee, I.; Lee, G.; Yoo, D.; Khang, G.; Kang, P. M.; Lee, D. Chemiluminescent and antioxidant micelles as theranostic agents for hydrogen peroxide associated–inflammatory diseases. Adv. Funct. Mater. 2012, 22, 4038–4043.

    Google Scholar 

  77. Shuhendler, A. J.; Pu, K. Y.; Cui, L.; Uetrecht, J. P.; Rao, J. H. Real–time imaging of oxidative and nitrosative stress in the liver of live animals for drug–toxicity testing. Nat. Biotechnol. 2014, 32, 373–380.

    Google Scholar 

  78. Zhen, X.; Zhang, C. W.; Xie, C.; Miao, Q. Q.; Lim, K. L.; Pu, K. Y. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano 2016, 10, 6400–6409.

    Google Scholar 

  79. Lee, Y.–D.; Lim, C.–K.; Singh, A.; Koh, J.; Kim, J.; Kwon, I. C.; Kim, S. Dye/peroxalate aggregated nanoparticles with enhanced and tunable chemiluminescence for biomedical imaging of hydrogen peroxide. ACS Nano 2012, 6, 6759–6766.

    Google Scholar 

  80. Yu, J. B.; Rong, Y.; Kuo, C.–T.; Zhou, X.–H.; Chiu, D. T. Recent advances in the development of highly luminescent semiconducting polymer dots and nanoparticles for biological imaging and medicine. Anal. Chem. 2017, 89, 42–56.

    Google Scholar 

  81. Wang, J. W.; Lv, F. T.; Liu, L. B.; Ma, Y. G.; Wang, S. Strategies to design conjugated polymer based materials for biological sensing and imaging. Coordin. Chem. Rev. 2018, 354, 135–154.

    Google Scholar 

  82. Nishihara, R.; Suzuki, H.; Hoshino, E.; Suganuma, S.; Sato, M.; Saitoh, T.; Nishiyama, S.; Iwasawa, N.; Citterio, D.; Suzuki, K. Bioluminescent coelenterazine derivatives with imidazopyrazinone C–6 extended substitution. Chem. Commun. 2015, 51, 391–394.

    Google Scholar 

  83. Li, P.; Liu, L.; Xiao, H. B.; Zhang, W.; Wang, L. L.; Tang, B. A new polymer nanoprobe based on chemiluminescence resonance energy transfer for ultrasensitive imaging of intrinsic superoxide anion in mice. J. Am. Chem. Soc. 2016, 138, 2893–2896.

    Google Scholar 

  84. Choi, H. S.; Gibbs, S. L.; Lee, J. H.; Kim, S. H.; Ashitate, Y.; Liu, F. B.; Hyun, H.; Park, G.; Xie, Y.; Bae, S. et al. Targeted zwitterionic near–infrared fluorophores for improved optical imaging. Nat. Biotechnol. 2013, 31, 148–153.

    Google Scholar 

  85. Hong, G. S.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L. M.; Huang, N. F.; Cooke, J. P.; Dai, H. J. Multifunctional in vivo vascular imaging using near–infrared II fluorescence. Nat. Med. 2012, 18, 1841–1846.

    Google Scholar 

  86. Wang, L. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462.

    Google Scholar 

  87. Weber, J.; Beard, P. C.; Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650.

    Google Scholar 

  88. Kim, C.; Favazza, C.; Wang, L. V. In vivo photoacoustic tomography of chemicals: High–resolution functional and molecular optical imaging at new depths. Chem. Rev. 2010, 110, 2756–2782.

    Google Scholar 

  89. Xu, M. H.; Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101.

    Google Scholar 

  90. De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B. R.; Ma, T.–J.; Oralkan, O. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557–562.

    Google Scholar 

  91. De La Zerda, A.; Liu, Z.; Bodapati, S.; Teed, R.; Vaithilingam, S.; Khuri–Yakub, B. T.; Chen, X. Y.; Dai, H. J.; Gambhir, S. S. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett. 2010, 10, 2168–2172.

    Google Scholar 

  92. Fan, Q. L.; Cheng, K.; Yang, Z.; Zhang, R. P.; Yang, M.; Hu, X.; Ma, X. W.; Bu, L. H.; Lu, X. M.; Xiong, X. X. et al. Perylene–diimide–based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv. Mater. 2015, 27, 843–847.

    Google Scholar 

  93. Wang, J. X.; Chen, F.; Arconada–Alvarez, S. J.; Hartanto, J.; Yap, L.–P.; Park, R.; Wang, F.; Vorobyova, I.; Dagliyan, G.; Conti, P. S. et al. A nanoscale tool for photoacoustic–based measurements of clotting time and therapeutic drug monitoring of heparin. Nano Lett. 2016, 16, 6265–6271.

    Google Scholar 

  94. Zhen, X.; Zhang, J. J.; Huang, J. G.; Xie, C.; Miao, Q. Q.; Pu, K. Y. Macrotheranostic probe with disease–activated near–infrared fluorescence, photoacoustic, and photothermal signals for imaging–guided therapy. Angew. Chem., Int. Ed. 2018, 57, 7804–7808.

    Google Scholar 

  95. Chen, M.; Tang, S. H.; Guo, Z. D.; Wang, X. Y.; Mo, S. G.; Huang, X. Q.; Liu, G.; Zheng, N. F. Core–shell Pd@Au nanoplates as theranostic agents for in–vivo photoacoustic imaging, CT imaging, and photothermal therapy. Adv. Mater. 2014, 26, 8210–8216.

    Google Scholar 

  96. Yang, K.; Hu, L. L.; Ma, X. X.; Ye, S. Q.; Cheng, L.; Shi, X. Z.; Li, C. H.; Li, Y. G.; Liu, Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 2012, 24, 1868–1872.

    Google Scholar 

  97. Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H. L.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324–332.

    Google Scholar 

  98. Lyu, Y.; Fang, Y.; Miao, Q. Q.; Zhen, X.; Ding, D.; Pu, K. Y. Intraparticle molecular orbital engineering of semiconducting polymer nanoparticles as amplified theranostics for in vivo photoacoustic imaging and photothermal therapy. ACS Nano 2016, 10, 4472–4481.

    Google Scholar 

  99. Zhen, X.; Xie, C.; Jiang, Y. Y.; Ai, X. Z.; Xing, B. G.; Pu, K. Y. Semiconducting photothermal nanoagonist for remote–controlled specific cancer therapy. Nano Lett. 2018, 18, 1498–1505.

    Google Scholar 

  100. Xie, C.; Cheng, P. H.; Pu, K. Y. Synthesis of PEGylated semiconducting polymer amphiphiles for molecular photoacoustic imaging and guided therapy. Chem.—Eur. J., in press, DOI: 10.1002/chem.201705716.

  101. Jiang, Y. Y.; Pu, K. Y. Advanced photoacoustic imaging applications of near–infrared absorbing organic nanoparticles. Small 2017, 13, 1700710.

    Google Scholar 

  102. Cui, D.; Xie, C.; Pu, K. Y. Development of semiconducting polymer nanoparticles for photoacoustic imaging. Macromol. Rapid Comm. 2017, 38, 1700125.

    Google Scholar 

  103. Lovell, J. F.; Liu, T. W. B.; Chen, J.; Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev. 2010, 110, 2839–2857.

    Google Scholar 

  104. Miao, Q. Q.; Pu, K. Y. Emerging designs of activatable photoacoustic probes for molecular imaging. Bioconjugate Chem. 2016, 27, 2808–2823.

    Google Scholar 

  105. Pu, K. Y.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J. G.; Gambhir, S. S.; Bao, Z.; Rao, J. H. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 2014, 9, 233–239.

    Google Scholar 

  106. Yin, C.; Zhen, X.; Fan, Q. L.; Huang, W.; Pu, K. Y. Degradable semiconducting oligomer amphiphile for ratiometric photoacoustic imaging of hypochlorite. ACS Nano 2017, 11, 4174–4182.

    Google Scholar 

  107. Zhang, J. J.; Zhen, X.; Upputuri, P. K.; Pramanik, M.; Chen, P.; Pu, K. Y. Activatable photoacoustic nanoprobes for in vivo ratiometric imaging of peroxynitrite. Adv. Mater. 2017, 29, 1604764.

    Google Scholar 

  108. Chen, Q.; Liang, C.; Sun, X. Q.; Chen, J. W.; Yang, Z. J.; Zhao, H.; Feng, L. Z.; Liu, Z. H2O2–responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay. Proc. Natl. Acad. Sci. USA 2017, 114, 5343–5348.

    Google Scholar 

  109. Xie, C.; Zhen, X.; Lyu, Y.; Pu, K. Y. Nanoparticle Regrowth enhances photoacoustic signals of semiconducting macromolecular probe for in vivo imaging. Adv. Mater. 2017, 29, 1703693.

    Google Scholar 

  110. Huryn, D. M.; Resnick, L. O.; Wipf, P. Contributions of academic laboratories to the discovery and development of chemical biology tools. J. Med. Chem. 2013, 56, 7161–7176.

    Google Scholar 

  111. Li, L. L.; Ma, H. L.; Qi, G. B.; Zhang, D.; Yu, F. Q.; Hu, Z. Y.; Wang, H. Pathological–condition–driven construction of supramolecular nanoassemblies for bacterial infection detection. Adv. Mater. 2016, 28, 254–262.

    Google Scholar 

  112. Zhen, X.; Feng, X. H.; Xie, C.; Zheng, Y. J.; Pu, K. Y. Surface engineering of semiconducting polymer nanoparticles for amplified photoacoustic imaging. Biomaterials 2017, 127, 97–106.

    Google Scholar 

  113. Cremer, J. W.; Covert, P. A.; Parmentier, E. A.; Signorell, R. Direct measurement of photoacoustic signal sensitivity to aerosol particle size. J. Phys. Chem. Lett. 2017, 8, 3398–3403.

    Google Scholar 

  114. Jiang, Y. Y.; Pu, K. Y. Molecular fluorescence and photoacoustic imaging in the second near–infrared optical window using organic contrast agents. Adv. Biosyst. 2018, 2, 1700262.

    Google Scholar 

Download references

Acknowledgements

K. P. thanks Nanyang Technological University (Start-Up grant: NTUSUG: M4081627.120) and Singapore Ministry of Education (Academic Research Fund Tier 1: RG133/15 M4011559 and 2015-T1-002-091; and Tier 2 MOE2016-T2-1-098) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanyi Pu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhen, X., Pu, K. Development of optical nanoprobes for molecular imaging of reactive oxygen and nitrogen species. Nano Res. 11, 5258–5280 (2018). https://doi.org/10.1007/s12274-018-2135-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2135-4

Keywords

Navigation