Skip to main content
Log in

In-situ liquid-cell TEM study of radial flow-guided motion of octahedral Au nanoparticles and nanoparticle clusters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The dynamic behavior of octahedral gold nanoparticles (NPs) and nanoparticle clusters (NPCs) in aqueous solution is studied by in-situ liquid-cell transmission electron microscopy (TEM). The octahedral Au NPs/NPCs show preferential orientations in the liquid cell, due to the interaction with the SiNx window. The Au NPs show long-range reversible hopping and three-dimensional (3D) rotational motions in the liquid environment. At the same time, the Au NPCs and NPs perform slow stick-slip and stick-roll motions, respectively, with a centripetal trend. The centripetal motions were explained by a liquid evaporation-induced radial flow model, in which the NPCs/NPs trajectories are controlled by Stokes forces and surface friction by the silicon nitride window. The calculated radius-dependent force (Fc) on the NPCs/NPs shows a semi-linear correlation with the distance r between the NPCs/NPs and the center of mass, accompanied with stochastic fluctuations, in agreement with the model predictions. This work thus demonstrates the effectiveness of in situ liquid-cell TEM for the in-depth understanding of complicated liquid flow and force interactions in nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 2003, 426, 271–274.

    Article  Google Scholar 

  2. Peplow, M. The tiniest Lego: A tale of nanoscale motors, rotors, switches and pumps. Nature 2015, 525, 18–21.

    Article  Google Scholar 

  3. Kundu, P. K.; Samanta, D.; Leizrowice, R.; Margulis, B.; Zhao, H.; Börner, M.; Udayabhaskararao, T.; Manna, D.; Klajn, R. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 2015, 7, 646–652.

    Article  Google Scholar 

  4. Vigderman, L.; Khanal, B. P.; Zubarev, E. R. Functional gold nanorods: Synthesis, self-assembly, and sensing applications. Adv. Mater. 2012, 24, 4811–4841.

    Article  Google Scholar 

  5. Jalali, M.; Siavash Moakhar, R.; Kushwaha, A.; Goh, G. K. L.; Riahi-Noori, N.; Sadrnezhaad, S. K. Enhanced dye loadinglight harvesting TiO2 photoanode with screen printed nanorod-nanoparticles assembly for highly efficient solar cell. Electrochim. Acta 2015, 169, 395–401.

    Article  Google Scholar 

  6. Jia, G. H.; Sitt, A.; Hitin, G. B.; Hadar, I.; Bekenstein, Y.; Amit, Y.; Popov, I.; Banin, U. Couples of colloidal semiconductor nanorods formed by self-limited assembly. Nat. Mater. 2014, 13, 301–307.

    Article  Google Scholar 

  7. Shan, W.; Zhu, X.; Liu, M.; Li, L.; Zhong, J. J.; Sun, W.; Zhang, Z. R.; Huang, Y. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 2015, 9, 2345–2356.

    Article  Google Scholar 

  8. Xu, Q. G.; Ensign, L. M.; Boylan, N. J.; Schön, A.; Gong, X. Q.; Yang, J. C.; Lamb, N. W.; Cai, S. T.; Yu, T.; Freire, E. et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano 2015, 9, 9217–9227.

    Article  Google Scholar 

  9. Park, J.; Zheng, H. M.; Lee, W. C.; Geissler, P. L.; Rabani, E.; Alivisatos, A. P. Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano 2012, 6, 2078–2085.

    Article  Google Scholar 

  10. Schmudde, M.; Grunewald, C.; Goroncy, C.; Noufele, C. N.; Stein, B.; Risse, T.; Graf, C. Controlling the interaction and non-close-packed arrangement of nanoparticles on large areas. ACS Nano 2016, 10, 3525–3535.

    Article  Google Scholar 

  11. Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 2006, 312, 420–424.

    Article  Google Scholar 

  12. Lloyd, J. A.; Ng, S. H.; Davis, T. J.; Gómez, D. E.; Bach, U. Size selective adsorption of gold nanoparticles by electrostatic assembly. J. Phys. Chem. C 2017, 121, 2437–2443.

    Article  Google Scholar 

  13. Gebbie, M. A.; Smith, A. M.; Dobbs, H. A.; Lee, A. A.; Warr, G. G.; Banquy, X.; Valtiner, M.; Rutland, M. W.; Israelachvili, J. N.; Perkin, S. et al. Long range electrostatic forces in ionic liquids. Chem. Commun. 2017, 53, 1214–1224.

    Article  Google Scholar 

  14. Tan, S. F.; Anand, U.; Mirsaidov, U. Interactions and attachment pathways between functionalized gold nanorods. ACS Nano 2017, 11, 1633–1640.

    Article  Google Scholar 

  15. Chen, Q.; Cho, H.; Manthiram, K.; Yoshida, M.; Ye, X. C.; Alivisatos, A. P. Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy. ACS Cent. Sci. 2015, 1, 33–39.

    Article  Google Scholar 

  16. Liu, K.; Nie, Z. H.; Zhao, N.; Li, W.; Rubinstein, M.; Kumacheva, E. Step-growth polymerization of inorganic nanoparticles. Science 2010, 329, 197–200.

    Article  Google Scholar 

  17. Li, B.; Li, W.; Li, H. L.; Wu, L. X. Ionic complexes of metal oxide clusters for versatile self-assemblies. Acc. Chem. Res. 2017, 50, 1391–1399.

    Article  Google Scholar 

  18. Nielsen, M. H.; Li, D. S.; Zhang, H. Z.; Aloni, S.; Han, T. Y. J.; Frandsen, C.; Seto, J.; Banfield, J. F.; Cölfen, H.; De Yoreo, J. J. Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Micros. Microanal. 2014, 20, 425–436.

    Article  Google Scholar 

  19. Chen, Y. C.; Chen, J. Y.; Wu, W. W. In situ observation of au nanostructure evolution in liquid cell TEM. J. Phys. Chem. C 2017, 121, 26069–26075.

    Article  Google Scholar 

  20. Dillon, S. J.; Chen, X. Temperature control in liquid cells for TEM. In Liquid Cell Electron Microscopy; Ross, F. M., Ed.; Cambridge University Press: Cambridge, 2016; pp 127–139.

    Chapter  Google Scholar 

  21. Chen, X.; Li, C.; Cao, H. L. Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale 2015, 7, 4811–4819.

    Article  Google Scholar 

  22. Chen, X.; Shu, J. P.; Chen, Q. Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM. Sci. Rep. 2017, 7, 46680.

    Article  Google Scholar 

  23. Chen, X.; Li, C.; Kong, X.; Cao, H. L.; Wang, H. L.; Zhou, X. Q. Direct observation of growth and self-assembly of Pt nanoclusters in water with the aid of a triblock polymer using in situ liquid cell transmission electron microscopy (TEM). Chin. J. Chem. 2017, 35, 1278–1283.

    Article  Google Scholar 

  24. Lee, W. C.; Kim, B. H.; Choi, S.; Takeuchi, S.; Park, J. Liquid cell electron microscopy of nanoparticle self-assembly driven by solvent drying. J. Phys. Chem. Lett. 2017, 8, 647–654.

    Article  Google Scholar 

  25. Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 2015, 350, aaa9886.

    Article  Google Scholar 

  26. De Jonge, N.; Bigelow, W. C.; Veith, G. M. Atmospheric pressure scanning transmission electron microscopy. Nano Lett. 2010, 10, 1028–1031.

    Article  Google Scholar 

  27. De Jonge, N.; Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 2011, 6, 695–704.

    Article  Google Scholar 

  28. Luo, B. B.; Smith, J. W.; Ou, Z. H.; Chen, Q. Quantifying the self-assembly behavior of anisotropic nanoparticles using liquid-phase transmission electron microscopy. Acc. Chem. Res. 2017, 50, 1125–1133.

    Article  Google Scholar 

  29. Luo, C.; Wang, C. L.; Wu, X.; Zhang, J.; Chu, J. H. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small 2017, 13, 1604259.

    Article  Google Scholar 

  30. Lin, G. H.; Zhu, X.; Anand, U.; Liu, Q.; Lu, J. Y.; Aabdin, Z.; Su, H. B.; Mirsaidov, U. Nanodroplet-mediated assembly of platinum nanoparticle rings in solution. Nano Lett. 2016, 16, 1092–1096.

    Article  Google Scholar 

  31. Zheng, H. M.; Claridge, S. A.; Minor, A. M.; Alivisatos, A. P.; Dahmen, U. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 2009, 9, 2460–2465.

    Article  Google Scholar 

  32. Liu, Y. Z.; Lin, X.-M.; Sun, Y. G.; Rajh, T. In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc. 2013, 135, 3764–3767.

    Article  Google Scholar 

  33. Sutter, E.; Sutter, P.; Tkachenko, A. V.; Krahne, R.; De Graaf, J.; Arciniegas, M.; Manna, L. In situ microscopy of the self-assembly of branched nanocrystals in solution. Nat. Commun. 2016, 7, 11213.

    Article  Google Scholar 

  34. Lin, G. H.; Chee, S. W.; Raj, S.; Král, P.; Mirsaidov, U. Linker-mediated self-assembly dynamics of charged nanoparticles. ACS Nano 2016, 10, 7443–7450.

    Article  Google Scholar 

  35. Chee, S. W.; Baraissov, Z.; Loh, N. D.; Matsudaira, P. T.; Mirsaidov, U. Desorption-mediated motion of nanoparticles at the liquid–solid interface. J. Phys. Chem. C 2016, 120, 20462–20470.

    Article  Google Scholar 

  36. Mirsaidov, U. M.; Zheng, H. M.; Bhattacharya, D.; Casana, Y.; Matsudaira, P. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA 2012, 109, 7187–7190.

    Article  Google Scholar 

  37. Chang, C. C.; Wu, H. L.; Kuo, C. H.; Huang, M. H. Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their selfassembled structures. Chem. Mater. 2008, 20, 7570–7574.

    Article  Google Scholar 

  38. Cheung, T. L.; Hong, L. Y.; Rao, N. X.; Yang, C. B.; Wang, L. B.; Lai, W. J.; Chong, P. H. J.; Law, W.-C.; Yong, K. T. The non-aqueous synthesis of shape controllable Cu2–xS plasmonic nanostructures in a continuous-flow millifluidic chip for the generation of photo-induced heating. Nanoscale 2016, 8, 6609–6622.

    Article  Google Scholar 

  39. Pan, L. J.; Tu, J.-W.; Ma, H.-T.; Yang, Y.-J.; Tian, Z.-Q.; Pang, D.-W.; Zhang, Z.-L. Controllable synthesis of nanocrystals in droplet reactors. Lab Chip 2018, 18, 41–56.

    Article  Google Scholar 

  40. Chen, X.; Li, C.; Ke, K. The development and applications of in situ liquid chamber TEM technologies. Chinese Sci. Bull. 2017, 62, 2886–2892.

    Google Scholar 

  41. van Huis, M. A.; Kunneman, L. T.; Overgaag, K.; Xu, Q.; Pandraud, G.; Zandergen, H. W.; Vanmaekelbergh, D. Lowtemperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Lett. 2008, 8, 3959–3963.

    Article  Google Scholar 

  42. Klein, K. L.; Anderson, I. M.; De Jonge, N. Transmission electron microscopy with a liquid flow cell. J. Microsc. 2011, 242, 117–123.

    Article  Google Scholar 

  43. Woehl, T. J.; Prozorov, T. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid. J. Phys. Chem. C 2015, 119, 21261–21269.

    Article  Google Scholar 

  44. Powers, A. S.; Liao, H. G.; Raja, S. N.; Bronstein, N. D.; Alivisatos, A. P.; Zheng, H. M. Tracking nanoparticle diffusion and interaction during self-assembly in a liquid cell. Nano Lett. 2017, 17, 15–20.

    Article  Google Scholar 

  45. Niu, W. X.; Zheng, S. L.; Wang, D. W.; Liu, X. Q.; Li, H. J.; Han, S.; Chen, J.; Tang, Z. Y.; Xu, G. B. Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J. Am. Chem. Soc. 2009, 131, 697–703.

    Article  Google Scholar 

  46. Zheng, H. M. Using molecular tweezers to move and image nanoparticles. Nanoscale 2013, 5, 4070–4078.

    Article  Google Scholar 

  47. Liu, J.; Wang, Z. W.; Sheng, A. X.; Liu, F.; Qin, F. Y.; Wang, Z. L. In situ observation of hematite nanoparticle aggregates using liquid cell transmission electron microscopy. Environ. Sci. Technol. 2016, 50, 5606–5613.

    Article  Google Scholar 

  48. Zhu, G. M.; Jiang, Y. Y.; Huang, W.; Zhang, H.; Lin, F.; Jin, C. H. Atomic resolution liquid-cell transmission electron microscopy investigations of the dynamics of nanoparticles in ultrathin liquids. Chem. Commun. 2013, 49, 10944–10946.

    Article  Google Scholar 

  49. Grogan, J. M.; Schneider, N. M.; Ross, F. M.; Bau, H. H. Bubble and pattern formation in liquid induced by an electron beam. Nano Lett. 2014, 14, 359–364.

    Article  Google Scholar 

  50. Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem. 2016, 67, 719–747.

    Article  Google Scholar 

  51. Wang, Y. B.; Chen, X.; Cao, H. L.; Deng, C.; Cao, X. D.; Wang, P. A structural study of Escherichia coli cells using an in situ liquid chamber TEM technology. J. Anal. Methods Chem. 2015, 2015, Article ID 829302.

    Google Scholar 

  52. Li, D. S.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J. J. Direction-specific interactions control crystal growth by oriented attachment. Science 2012, 336, 1014–1018.

    Article  Google Scholar 

  53. Pettyjohn, E. S.; Christiansen, E. B. Effect of particle shape on free-settling rates of isometric particles. Chem. Eng. Prog. 1948, 44, 157–172.

    Google Scholar 

  54. Brenner, H. The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 1961, 16, 242–251.

    Article  Google Scholar 

  55. Francis, A. W. Wall effect in falling ball method for viscosity. Physics 1933, 4, 403–406.

    Article  Google Scholar 

  56. Yang, J.; Andrei, C. M.; Botton, G. A.; Soleymani, L. In liquid observation and quantification of nucleation and growth of gold nanostructures using in situ transmission electron microscopy. J. Phys. Chem. C 2017, 121, 7435–7441.

    Article  Google Scholar 

  57. Wu, J. B.; Gao, W. P.; Yang, H.; Zuo, J. M. Dissolution kinetics of oxidative etching of cubic and icosahedral platinum nanoparticles revealed by in situ liquid transmission electron microscopy. ACS Nano 2017, 11, 1696–1703.

    Article  Google Scholar 

  58. Gómez-Graña, S.; Fernández-López, C.; Polavarapu, L.; Salmon, J. B.; Leng, J.; Pastoriza-Santos, I.; Pérez-Juste, J. Gold nanooctahedra with tunable size and microfluidicinduced 3D assembly for highly uniform SERS-active supercrystals. Chem. Mater. 2015, 27, 8310–8317.

    Article  Google Scholar 

  59. Mao, Z. W.; Xu, H. L.; Wang, D. Y. Molecular mimetic self-assembly of colloidal particles. Adv. Funct. Mater. 2010, 20, 1053–1074.

    Article  Google Scholar 

  60. Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS Nano 2010, 4, 3591–3605.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of Shanghai Leading Academic Discipline Project (No. B502), Shanghai Key Laboratory Project (No. 08DZ2230500), and the State Key Laboratory of Functional Materials for Informatics Open Project (No. SKL201306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Chen, X., Liu, H. et al. In-situ liquid-cell TEM study of radial flow-guided motion of octahedral Au nanoparticles and nanoparticle clusters. Nano Res. 11, 4697–4707 (2018). https://doi.org/10.1007/s12274-018-2052-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2052-6

Keywords

Navigation