Nano Research

, Volume 11, Issue 9, pp 4697–4707 | Cite as

In-situ liquid-cell TEM study of radial flow-guided motion of octahedral Au nanoparticles and nanoparticle clusters

  • Chang Li
  • Xin Chen
  • Haiyang Liu
  • Jiali Fang
  • Xiaoqin Zhou
Research Article


The dynamic behavior of octahedral gold nanoparticles (NPs) and nanoparticle clusters (NPCs) in aqueous solution is studied by in-situ liquid-cell transmission electron microscopy (TEM). The octahedral Au NPs/NPCs show preferential orientations in the liquid cell, due to the interaction with the SiNx window. The Au NPs show long-range reversible hopping and three-dimensional (3D) rotational motions in the liquid environment. At the same time, the Au NPCs and NPs perform slow stick-slip and stick-roll motions, respectively, with a centripetal trend. The centripetal motions were explained by a liquid evaporation-induced radial flow model, in which the NPCs/NPs trajectories are controlled by Stokes forces and surface friction by the silicon nitride window. The calculated radius-dependent force (Fc) on the NPCs/NPs shows a semi-linear correlation with the distance r between the NPCs/NPs and the center of mass, accompanied with stochastic fluctuations, in agreement with the model predictions. This work thus demonstrates the effectiveness of in situ liquid-cell TEM for the in-depth understanding of complicated liquid flow and force interactions in nanomaterials.


in situ transmission electron microscopy (TEM) nanoparticles nanoassembling nanoscale fluids trapping force 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge the support of Shanghai Leading Academic Discipline Project (No. B502), Shanghai Key Laboratory Project (No. 08DZ2230500), and the State Key Laboratory of Functional Materials for Informatics Open Project (No. SKL201306).

Supplementary material

12274_2018_2052_MOESM1_ESM.wmv (201 kb)
Supplementary material, approximately 201 KB.
12274_2018_2052_MOESM2_ESM.wmv (3.2 mb)
Supplementary material, approximately 3.18 MB.
12274_2018_2052_MOESM3_ESM.avi (8.7 mb)
Supplementary material, approximately 8.69 MB.
12274_2018_2052_MOESM4_ESM.pdf (1.6 mb)
In-situ liquid-cell TEM study of radial flow-guided motion of octahedral Au nanoparticles and nanoparticle clusters


  1. [1]
    Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 2003, 426, 271–274.CrossRefGoogle Scholar
  2. [2]
    Peplow, M. The tiniest Lego: A tale of nanoscale motors, rotors, switches and pumps. Nature 2015, 525, 18–21.CrossRefGoogle Scholar
  3. [3]
    Kundu, P. K.; Samanta, D.; Leizrowice, R.; Margulis, B.; Zhao, H.; Börner, M.; Udayabhaskararao, T.; Manna, D.; Klajn, R. Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 2015, 7, 646–652.CrossRefGoogle Scholar
  4. [4]
    Vigderman, L.; Khanal, B. P.; Zubarev, E. R. Functional gold nanorods: Synthesis, self-assembly, and sensing applications. Adv. Mater. 2012, 24, 4811–4841.CrossRefGoogle Scholar
  5. [5]
    Jalali, M.; Siavash Moakhar, R.; Kushwaha, A.; Goh, G. K. L.; Riahi-Noori, N.; Sadrnezhaad, S. K. Enhanced dye loadinglight harvesting TiO2 photoanode with screen printed nanorod-nanoparticles assembly for highly efficient solar cell. Electrochim. Acta 2015, 169, 395–401.CrossRefGoogle Scholar
  6. [6]
    Jia, G. H.; Sitt, A.; Hitin, G. B.; Hadar, I.; Bekenstein, Y.; Amit, Y.; Popov, I.; Banin, U. Couples of colloidal semiconductor nanorods formed by self-limited assembly. Nat. Mater. 2014, 13, 301–307.CrossRefGoogle Scholar
  7. [7]
    Shan, W.; Zhu, X.; Liu, M.; Li, L.; Zhong, J. J.; Sun, W.; Zhang, Z. R.; Huang, Y. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 2015, 9, 2345–2356.CrossRefGoogle Scholar
  8. [8]
    Xu, Q. G.; Ensign, L. M.; Boylan, N. J.; Schön, A.; Gong, X. Q.; Yang, J. C.; Lamb, N. W.; Cai, S. T.; Yu, T.; Freire, E. et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano 2015, 9, 9217–9227.CrossRefGoogle Scholar
  9. [9]
    Park, J.; Zheng, H. M.; Lee, W. C.; Geissler, P. L.; Rabani, E.; Alivisatos, A. P. Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano 2012, 6, 2078–2085.CrossRefGoogle Scholar
  10. [10]
    Schmudde, M.; Grunewald, C.; Goroncy, C.; Noufele, C. N.; Stein, B.; Risse, T.; Graf, C. Controlling the interaction and non-close-packed arrangement of nanoparticles on large areas. ACS Nano 2016, 10, 3525–3535.CrossRefGoogle Scholar
  11. [11]
    Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 2006, 312, 420–424.CrossRefGoogle Scholar
  12. [12]
    Lloyd, J. A.; Ng, S. H.; Davis, T. J.; Gómez, D. E.; Bach, U. Size selective adsorption of gold nanoparticles by electrostatic assembly. J. Phys. Chem. C 2017, 121, 2437–2443.CrossRefGoogle Scholar
  13. [13]
    Gebbie, M. A.; Smith, A. M.; Dobbs, H. A.; Lee, A. A.; Warr, G. G.; Banquy, X.; Valtiner, M.; Rutland, M. W.; Israelachvili, J. N.; Perkin, S. et al. Long range electrostatic forces in ionic liquids. Chem. Commun. 2017, 53, 1214–1224.CrossRefGoogle Scholar
  14. [14]
    Tan, S. F.; Anand, U.; Mirsaidov, U. Interactions and attachment pathways between functionalized gold nanorods. ACS Nano 2017, 11, 1633–1640.CrossRefGoogle Scholar
  15. [15]
    Chen, Q.; Cho, H.; Manthiram, K.; Yoshida, M.; Ye, X. C.; Alivisatos, A. P. Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy. ACS Cent. Sci. 2015, 1, 33–39.CrossRefGoogle Scholar
  16. [16]
    Liu, K.; Nie, Z. H.; Zhao, N.; Li, W.; Rubinstein, M.; Kumacheva, E. Step-growth polymerization of inorganic nanoparticles. Science 2010, 329, 197–200.CrossRefGoogle Scholar
  17. [17]
    Li, B.; Li, W.; Li, H. L.; Wu, L. X. Ionic complexes of metal oxide clusters for versatile self-assemblies. Acc. Chem. Res. 2017, 50, 1391–1399.CrossRefGoogle Scholar
  18. [18]
    Nielsen, M. H.; Li, D. S.; Zhang, H. Z.; Aloni, S.; Han, T. Y. J.; Frandsen, C.; Seto, J.; Banfield, J. F.; Cölfen, H.; De Yoreo, J. J. Investigating processes of nanocrystal formation and transformation via liquid cell TEM. Micros. Microanal. 2014, 20, 425–436.CrossRefGoogle Scholar
  19. [19]
    Chen, Y. C.; Chen, J. Y.; Wu, W. W. In situ observation of au nanostructure evolution in liquid cell TEM. J. Phys. Chem. C 2017, 121, 26069–26075.CrossRefGoogle Scholar
  20. [20]
    Dillon, S. J.; Chen, X. Temperature control in liquid cells for TEM. In Liquid Cell Electron Microscopy; Ross, F. M., Ed.; Cambridge University Press: Cambridge, 2016; pp 127–139.CrossRefGoogle Scholar
  21. [21]
    Chen, X.; Li, C.; Cao, H. L. Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale 2015, 7, 4811–4819.CrossRefGoogle Scholar
  22. [22]
    Chen, X.; Shu, J. P.; Chen, Q. Abnormal gas-liquid-solid phase transition behaviour of water observed with in situ environmental SEM. Sci. Rep. 2017, 7, 46680.CrossRefGoogle Scholar
  23. [23]
    Chen, X.; Li, C.; Kong, X.; Cao, H. L.; Wang, H. L.; Zhou, X. Q. Direct observation of growth and self-assembly of Pt nanoclusters in water with the aid of a triblock polymer using in situ liquid cell transmission electron microscopy (TEM). Chin. J. Chem. 2017, 35, 1278–1283.CrossRefGoogle Scholar
  24. [24]
    Lee, W. C.; Kim, B. H.; Choi, S.; Takeuchi, S.; Park, J. Liquid cell electron microscopy of nanoparticle self-assembly driven by solvent drying. J. Phys. Chem. Lett. 2017, 8, 647–654.CrossRefGoogle Scholar
  25. [25]
    Ross, F. M. Opportunities and challenges in liquid cell electron microscopy. Science 2015, 350, aaa9886.CrossRefGoogle Scholar
  26. [26]
    De Jonge, N.; Bigelow, W. C.; Veith, G. M. Atmospheric pressure scanning transmission electron microscopy. Nano Lett. 2010, 10, 1028–1031.CrossRefGoogle Scholar
  27. [27]
    De Jonge, N.; Ross, F. M. Electron microscopy of specimens in liquid. Nat. Nanotechnol. 2011, 6, 695–704.CrossRefGoogle Scholar
  28. [28]
    Luo, B. B.; Smith, J. W.; Ou, Z. H.; Chen, Q. Quantifying the self-assembly behavior of anisotropic nanoparticles using liquid-phase transmission electron microscopy. Acc. Chem. Res. 2017, 50, 1125–1133.CrossRefGoogle Scholar
  29. [29]
    Luo, C.; Wang, C. L.; Wu, X.; Zhang, J.; Chu, J. H. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small 2017, 13, 1604259.CrossRefGoogle Scholar
  30. [30]
    Lin, G. H.; Zhu, X.; Anand, U.; Liu, Q.; Lu, J. Y.; Aabdin, Z.; Su, H. B.; Mirsaidov, U. Nanodroplet-mediated assembly of platinum nanoparticle rings in solution. Nano Lett. 2016, 16, 1092–1096.CrossRefGoogle Scholar
  31. [31]
    Zheng, H. M.; Claridge, S. A.; Minor, A. M.; Alivisatos, A. P.; Dahmen, U. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 2009, 9, 2460–2465.CrossRefGoogle Scholar
  32. [32]
    Liu, Y. Z.; Lin, X.-M.; Sun, Y. G.; Rajh, T. In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc. 2013, 135, 3764–3767.CrossRefGoogle Scholar
  33. [33]
    Sutter, E.; Sutter, P.; Tkachenko, A. V.; Krahne, R.; De Graaf, J.; Arciniegas, M.; Manna, L. In situ microscopy of the self-assembly of branched nanocrystals in solution. Nat. Commun. 2016, 7, 11213.CrossRefGoogle Scholar
  34. [34]
    Lin, G. H.; Chee, S. W.; Raj, S.; Král, P.; Mirsaidov, U. Linker-mediated self-assembly dynamics of charged nanoparticles. ACS Nano 2016, 10, 7443–7450.CrossRefGoogle Scholar
  35. [35]
    Chee, S. W.; Baraissov, Z.; Loh, N. D.; Matsudaira, P. T.; Mirsaidov, U. Desorption-mediated motion of nanoparticles at the liquid–solid interface. J. Phys. Chem. C 2016, 120, 20462–20470.CrossRefGoogle Scholar
  36. [36]
    Mirsaidov, U. M.; Zheng, H. M.; Bhattacharya, D.; Casana, Y.; Matsudaira, P. Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA 2012, 109, 7187–7190.CrossRefGoogle Scholar
  37. [37]
    Chang, C. C.; Wu, H. L.; Kuo, C. H.; Huang, M. H. Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their selfassembled structures. Chem. Mater. 2008, 20, 7570–7574.CrossRefGoogle Scholar
  38. [38]
    Cheung, T. L.; Hong, L. Y.; Rao, N. X.; Yang, C. B.; Wang, L. B.; Lai, W. J.; Chong, P. H. J.; Law, W.-C.; Yong, K. T. The non-aqueous synthesis of shape controllable Cu2–xS plasmonic nanostructures in a continuous-flow millifluidic chip for the generation of photo-induced heating. Nanoscale 2016, 8, 6609–6622.CrossRefGoogle Scholar
  39. [39]
    Pan, L. J.; Tu, J.-W.; Ma, H.-T.; Yang, Y.-J.; Tian, Z.-Q.; Pang, D.-W.; Zhang, Z.-L. Controllable synthesis of nanocrystals in droplet reactors. Lab Chip 2018, 18, 41–56.CrossRefGoogle Scholar
  40. [40]
    Chen, X.; Li, C.; Ke, K. The development and applications of in situ liquid chamber TEM technologies. Chinese Sci. Bull. 2017, 62, 2886–2892.Google Scholar
  41. [41]
    van Huis, M. A.; Kunneman, L. T.; Overgaag, K.; Xu, Q.; Pandraud, G.; Zandergen, H. W.; Vanmaekelbergh, D. Lowtemperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Lett. 2008, 8, 3959–3963.CrossRefGoogle Scholar
  42. [42]
    Klein, K. L.; Anderson, I. M.; De Jonge, N. Transmission electron microscopy with a liquid flow cell. J. Microsc. 2011, 242, 117–123.CrossRefGoogle Scholar
  43. [43]
    Woehl, T. J.; Prozorov, T. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid. J. Phys. Chem. C 2015, 119, 21261–21269.CrossRefGoogle Scholar
  44. [44]
    Powers, A. S.; Liao, H. G.; Raja, S. N.; Bronstein, N. D.; Alivisatos, A. P.; Zheng, H. M. Tracking nanoparticle diffusion and interaction during self-assembly in a liquid cell. Nano Lett. 2017, 17, 15–20.CrossRefGoogle Scholar
  45. [45]
    Niu, W. X.; Zheng, S. L.; Wang, D. W.; Liu, X. Q.; Li, H. J.; Han, S.; Chen, J.; Tang, Z. Y.; Xu, G. B. Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J. Am. Chem. Soc. 2009, 131, 697–703.CrossRefGoogle Scholar
  46. [46]
    Zheng, H. M. Using molecular tweezers to move and image nanoparticles. Nanoscale 2013, 5, 4070–4078.CrossRefGoogle Scholar
  47. [47]
    Liu, J.; Wang, Z. W.; Sheng, A. X.; Liu, F.; Qin, F. Y.; Wang, Z. L. In situ observation of hematite nanoparticle aggregates using liquid cell transmission electron microscopy. Environ. Sci. Technol. 2016, 50, 5606–5613.CrossRefGoogle Scholar
  48. [48]
    Zhu, G. M.; Jiang, Y. Y.; Huang, W.; Zhang, H.; Lin, F.; Jin, C. H. Atomic resolution liquid-cell transmission electron microscopy investigations of the dynamics of nanoparticles in ultrathin liquids. Chem. Commun. 2013, 49, 10944–10946.CrossRefGoogle Scholar
  49. [49]
    Grogan, J. M.; Schneider, N. M.; Ross, F. M.; Bau, H. H. Bubble and pattern formation in liquid induced by an electron beam. Nano Lett. 2014, 14, 359–364.CrossRefGoogle Scholar
  50. [50]
    Liao, H. G.; Zheng, H. M. Liquid cell transmission electron microscopy. Annu. Rev. Phys. Chem. 2016, 67, 719–747.CrossRefGoogle Scholar
  51. [51]
    Wang, Y. B.; Chen, X.; Cao, H. L.; Deng, C.; Cao, X. D.; Wang, P. A structural study of Escherichia coli cells using an in situ liquid chamber TEM technology. J. Anal. Methods Chem. 2015, 2015, Article ID 829302.Google Scholar
  52. [52]
    Li, D. S.; Nielsen, M. H.; Lee, J. R. I.; Frandsen, C.; Banfield, J. F.; De Yoreo, J. J. Direction-specific interactions control crystal growth by oriented attachment. Science 2012, 336, 1014–1018.CrossRefGoogle Scholar
  53. [53]
    Pettyjohn, E. S.; Christiansen, E. B. Effect of particle shape on free-settling rates of isometric particles. Chem. Eng. Prog. 1948, 44, 157–172.Google Scholar
  54. [54]
    Brenner, H. The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 1961, 16, 242–251.CrossRefGoogle Scholar
  55. [55]
    Francis, A. W. Wall effect in falling ball method for viscosity. Physics 1933, 4, 403–406.CrossRefGoogle Scholar
  56. [56]
    Yang, J.; Andrei, C. M.; Botton, G. A.; Soleymani, L. In liquid observation and quantification of nucleation and growth of gold nanostructures using in situ transmission electron microscopy. J. Phys. Chem. C 2017, 121, 7435–7441.CrossRefGoogle Scholar
  57. [57]
    Wu, J. B.; Gao, W. P.; Yang, H.; Zuo, J. M. Dissolution kinetics of oxidative etching of cubic and icosahedral platinum nanoparticles revealed by in situ liquid transmission electron microscopy. ACS Nano 2017, 11, 1696–1703.CrossRefGoogle Scholar
  58. [58]
    Gómez-Graña, S.; Fernández-López, C.; Polavarapu, L.; Salmon, J. B.; Leng, J.; Pastoriza-Santos, I.; Pérez-Juste, J. Gold nanooctahedra with tunable size and microfluidicinduced 3D assembly for highly uniform SERS-active supercrystals. Chem. Mater. 2015, 27, 8310–8317.CrossRefGoogle Scholar
  59. [59]
    Mao, Z. W.; Xu, H. L.; Wang, D. Y. Molecular mimetic self-assembly of colloidal particles. Adv. Funct. Mater. 2010, 20, 1053–1074.CrossRefGoogle Scholar
  60. [60]
    Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS Nano 2010, 4, 3591–3605.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chang Li
    • 1
  • Xin Chen
    • 1
    • 2
  • Haiyang Liu
    • 1
  • Jiali Fang
    • 1
  • Xiaoqin Zhou
    • 1
  1. 1.School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Key Laboratory for Ultrafine Materials of Ministry of Education and Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations