Skip to main content
Log in

A chemophotothermal and targeting multifunctional nanoprobe with a tumor-diagnosing ability

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of multifunctional nanoparticles for diagnosis and therapy of cancer has been a focus of research in recent years. Owing to excellent properties of chemophotothermal therapy and tumor targeting accompanied by magnetic resonance (MR) or computed tomography (CT) imaging, mesoporous silica has been widely applied to tumor diagnosing carriers. However, previous research focused more on chemotherapy combined with photothermal therapeutic strategies but ignored intuitive assessment of tumors. In this work, we report a novel nanoprobe consisting of hyaluronic-acid–modified Gold Nanorods@mSiO2@Mn@DOX (GNR@MMH@DOX) nanoparticles, which realize multifunctional integration of therapeutics and imaging. Au nanorods (GNRs) were synthesized without a seed precursor by a water bath method, then sequentially modified with mesoporous silica, doped with Mn2+, and loaded with doxorubicin in a solution. In vitro and in vivo assays verified their great biocompatibility, good stability, and attractive specificity of targeting to receptor CD44, which is overexpressed on cancer cells. In addition, GNR@MMH nanoparticles proved to be a more distinguishable CT/MR imaging contrast compared to commercial contrast agents. The article demonstrates promising composition for CT/MR imaging and photothermal therapy of tumors, giving new insights into the diagnosis and therapy of different kinds of malignant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near- infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353–1359. DOI: 10.1002/adma.201204683.

    Article  Google Scholar 

  2. Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287.

    Article  Google Scholar 

  3. Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. 2007, 7, 1929–1934.

    Article  Google Scholar 

  4. Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217–228.

    Article  Google Scholar 

  5. Lal, S.; Clare, S. E.; Halas, N. J. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc. Chem. Res. 2008, 41, 1842–1851.

    Article  Google Scholar 

  6. Zhang, P. C.; Hu, C. H.; Ran, W.; Meng, J.; Yin, Q.; Li, Y. P. Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics 2016, 6, 948–968.

    Article  Google Scholar 

  7. Choi, W. I.; Kim, J. Y.; Kang, C.; Byeon, C. C.; Kim, Y. H.; Tae, G. Tumor regression in vivo by photothermal therapy based on goldnanorod-loaded, functional nanocarriers. ACS Nano 2011, 5, 1995–2003.

    Article  Google Scholar 

  8. Dykman, L. A.; Khlebtsov, N. G. Multifunctional gold-based nanocomposites for theranostics. Biomaterials 2016, 108, 13–34.

    Article  Google Scholar 

  9. Lin, Z.; Liu, Y.; Ma, X. M.; Hu, S. Y.; Zhang, J. W.; Wu, Q.; Ye, W. B.; Zhu, S. Y.; Yang, D. H.; Qu, D. B. et al. Photothermal ablation of bone metastasis of breast cancer using PEGylated multi-walled carbon nanotubes. Sci. Rep. 2015, 5, 11709. DOI: 10.1038/srep11709.

    Article  Google Scholar 

  10. Zhao, H.; Chao, Y.; Liu, J. J.; Huang, J.; Pan, J.; Guo, W. L.; Wu, J. Z.; Sheng, M.; Yang, K.; Wang, J. et al. Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics 2016, 6, 1833–1843.

    Article  Google Scholar 

  11. Shi, X. Z.; Gong, H.; Li, Y. J.; Wang, C.; Cheng, L.; Liu, Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 2013, 34, 4786–4793.

    Article  Google Scholar 

  12. Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

    Article  Google Scholar 

  13. Ai, X. Z.; Ho, C. J. H.; Aw, J. X.; Attia, A. B. E.; Mu, J.; Wang, Y.; Wang, X. Y.; Wang, Y.; Liu, X. G.; Chen, H. B. et al. in vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat. Commun. 2016, 7, 10432. DOI: 10.1038/ncomms10432.

    Article  Google Scholar 

  14. Jin, H. L.; Zhao, G. F.; Hu, J. L.; Ren, Q. G.; Yang, K.; Wan, C.; Huang, A.; Li, P. D.; Feng, J. P.; Chen, J. et al. Melittin-containing hybrid peptide hydrogels for enhanced photothermal therapy of glioblastoma. ACS Appl. Mater. Interfaces 2017, 9, 25755–25766.

    Article  Google Scholar 

  15. Liu, Z.; Robinson, J. T.; Tabakman, S. M.; Yang, K.; Dai, H. J. Carbon materials for drug delivery & cancer therapy. Mater. Today 2011, 14, 316–323.

    Article  Google Scholar 

  16. Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 2008, 41, 1721–1730.

    Article  Google Scholar 

  17. Yang, K.; Wan, J. M.; Zhang, S.; Zhang, Y. J.; Lee, S. T.; Liu, Z. in vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 2011, 5, 516–522.

    Article  Google Scholar 

  18. Yu, M.; Guo, F.; Tan, F. P.; Li, N. Dual-targeting nanocarrier system based on thermosensitive liposomes and gold nanorods for cancer thermo-chemotherapy. J. Controlled Release 2015, 215, 91–100.

    Article  Google Scholar 

  19. Yuan, A. H.; Huan, W.; Liu, X.; Zhang, Z. C.; Zhang, Y. F.; Wu, J. H.; Hu, Y. Q. NIR light-activated drug release for synergetic chemo-photothermal therapy. Mol. Pharmaceutics 2017, 14, 242–251.

    Article  Google Scholar 

  20. Peng, P. C.; Hong, R. L.; Tsai, Y. J.; Li, P. T.; Tsai, T.; Chen, C. T. Dual-effect liposomes encapsulated with doxorubicin and chlorin e6 augment the therapeutic effect of tumor treatment. Lasers Surg. Med. 2015, 47, 77–87.

    Article  Google Scholar 

  21. Joo, K. I.; Xiao, L.; Liu, S. L.; Liu, Y. R.; Lee, C. L.; Conti, P. S.; Wong, M. K.; Li, Z. B.; Wang, P. Crosslinked multilamellar liposomes for controlled delivery of anticancer drugs. Biomaterials 2013, 34, 3098–3109.

    Article  Google Scholar 

  22. Barenholz, Y. Doxil(R)-the first FDA-approved nano-drug: Lessons learned. J. Controlled Release 2012, 160, 117–134.

    Article  Google Scholar 

  23. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery 2005, 4, 145–160.

    Article  Google Scholar 

  24. Pakunlu, R. I.; Wang, Y.; Tsao, W.; Pozharov, V.; Cook, T. J.; Minko, T. Enhancement of the efficacy of chemotherapy for lung cancer by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense. Cancer Res. 2004, 64, 6214–6224.

    Article  Google Scholar 

  25. Chen, Y. B.; Liao, J.; Xie, R.; Chen, G. L.; Chen, G. Discrimination of metastatic from hyperplastic pelvic lymph nodes in patients with cervical cancer by diffusion-weighted magnetic resonance imaging. Abdom. Imaging 2011, 36, 102–109.

    Article  Google Scholar 

  26. Fujiwara, T.; Yasufuku, K.; Nakajima, T.; Chiyo, M.; Yoshida, S.; Suzuki, M.; Shibuya, K.; Hiroshima, K.; Nakatani, Y.; Yoshino, I. The utility of sonographic features during endobronchial ultrasound-guided transbronchial needle aspiration for lymph node staging in patients with lung cancer: A standard endobronchial ultrasound image classification system. Chest 2010, 138, 641–647.

    Article  Google Scholar 

  27. Bluemel, C.; Schnelzer, A.; Okur, A.; Ehlerding, A.; Paepke, S.; Scheidhauer, K.; Kiechle, M. Freehand SPECT for image-guided sentinel lymph node biopsy in breast cancer. Eur. J. Nuclear Med. Mol. Imaging 2013, 40, 1656–1661.

    Article  Google Scholar 

  28. McElroy, M.; Hayashi, K.; Garmy-Susini, B.; Kaushal, S.; Varner, J. A.; Moossa, A. R.; Hoffman, R. M.; Bouvet, M. Fluorescent LYVE-1 antibody to image dynamically lymphatic trafficking of cancer cells in vivo. J. Surgical Res. 2009, 151, 68–73.

    Article  Google Scholar 

  29. Abellan-Pose, R.; Teijeiro-Valiño, C.; Santander-Ortega, M. J.; Borrajo, E.; Vidal, A.; Garcia-Fuentes, M.; Csaba, N.; Alonso, M. J. Polyaminoacid nanocapsules for drug delivery to the lymphatic system: Effect of the particle size. Int. J. Pharmaceutics 2016, 509, 107–117.

    Article  Google Scholar 

  30. Irjala, H.; Elima, K.; Johansson, E. L.; Merinen, M.; Kontula, K.; Alanen, K.; Grenman, R.; Salmi, M.; Jalkanen, S. The same endothelial receptor controls lymphocyte traffic both in vascular and lymphatic vessels. Eur. J. Immunol. 2003, 33, 815–824.

    Article  Google Scholar 

  31. Kobayashi, H.; Kawamoto, S.; Sakai, Y.; Choyke, P. L.; Star, R. A.; Brechbiel, M. W.; Sato, N.; Tagaya, Y.; Morris, J. C.; Waldmann, T. A. Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J. Natl. Cancer Inst. 2004, 96, 703–708.

    Article  Google Scholar 

  32. Li, J. C.; Hu, Y.; Yang, J.; Wei, P.; Sun, W. J.; Shen, M. W.; Zhang, G. X.; Shi, X. Y. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 2015, 38, 10–21.

    Article  Google Scholar 

  33. Zhang, W.; Guo, Z. Y.; Huang, D. Q.; Liu, Z. M.; Guo, X.; Zhong, H. Q. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011, 32, 8555–8561.

    Article  Google Scholar 

  34. Liu, Y. X.; Li, L. Y.; Guo, Q. W.; Wang, L.; Liu, D. D.; Wei, Z. W.; Zhou, J. Novel Cs-based upconversion nanoparticles as dual-modal CT and UCL imaging agents for chemo-photothermal synergistic therapy. Theranostics 2016, 6, 1491–1505.

    Article  Google Scholar 

  35. Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225–1236.

    Article  Google Scholar 

  36. Maldonado, C. R.; Salassa, L.; Gomez-Blanco, N.; Mareque-Rivas, J. C. Nano-functionalization of metal complexes for molecular imaging and anticancer therapy. Coordin. Chem. Rev. 2013, 257, 2668–2688.

    Article  Google Scholar 

  37. Wang, Y.; Huang, R. Q.; Liang, G. H.; Zhang, Z. Y.; Zhang, P.; Yu, S. N.; Kong, J. L. MRI-visualized, dual-targeting, combined tumor therapy using magnetic graphene-based mesoporous silica. Small 2014, 10, 109–116.

    Article  Google Scholar 

  38. Kim, J.; Lee, J. E.; Lee, S. H.; Yu, J. H.; Lee, J. H.; Park, T. G.; Hyeon, T. Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-argeted imaging and magnetically guided drug delivery. Adv. Mater. 2008, 20, 478–483.

    Article  Google Scholar 

  39. Xu, J. S.; Huang, J. W.; Qin, R. G.; Hinkle, G. H.; Povoski, S. P.; Martin, E. W.; Xu, R. X. Synthesizing and binding dual-mode poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging. Biomaterials 2010, 31, 1716–1722.

    Article  Google Scholar 

  40. Lee, J. H.; Lee, K.; Moon, S. H.; Lee, Y.; Park, T. G.; Cheon, J. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem., Int. Ed. 2009, 48, 4174–4179.

    Article  Google Scholar 

  41. Schneider, G. F.; Subr, V.; Ulbrich, K.; Decher, G. Multifunctional cytotoxic stealth nanoparticles. A model approach with potential for cancer therapy. Nano Lett. 2009, 9, 636–642.

    Google Scholar 

  42. Wu, H. X.; Zhang, S. J.; Zhang, J. M.; Liu, G.; Shi, J. L.; Zhang, L. X.; Cui, X, Z.; Ruan, M. L.; He, Q. J.; Bu, W. B. A hollow-core, magnetic, and mesoporous double-shell nanostructure: In situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties. Adv. Funct. Mater. 2011, 21, 1850–1862. DOI: 10.1002/adfm.201002337.

    Article  Google Scholar 

  43. Li, C. X.; Yang, D. M.; Ma, P. A.; Chen, Y. Y.; Wu, Y.; Hou, Z. Y.; Dai, Y. L.; Zhao, J. H.; Sui, C. P.; Lin, J. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. Small 2013, 9, 4150–4159. DOI: 10.1002/smll.201301093.

    Article  Google Scholar 

  44. Shen, S.; Tang, H. Y.; Zhang, X. T.; Ren, J. F.; Pang, Z. Q.; Wang, D. G.; Gao, H. L.; Qian, Y.; Jiang, X. G.; Yang, W. L. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013, 34, 3150–3158.

    Article  Google Scholar 

  45. Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina. Chem. Mater. 1990, 2, 186–191.

    Google Scholar 

  46. Chanmee, T.; Ontong, P.; Kimata, K.; Itano, N. Key roles of hyaluronan and its CD44 receptor in the stemness and survival of cancer stem cells. Front. Oncol. 2015, 5, 180. DOI: 10.3389/fonc.2015.00180.

    Article  Google Scholar 

  47. Burke, A.; Ding, X. F.; Singh, R.; Kraft, R. A.; Levi- Polyachenko, N.; Rylanderd, M. N.; Szot, C.; Buchanan, C.; Whitney, J.; Fisher, J. et al. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl. Acad. Sci. USA 2009, 106, 12897–12902. DOI: 10.1073/pnas.0905195106.

    Article  Google Scholar 

  48. Samanta, D.; Meiser, J. L.; Zare, R. N. Polypyrrole nanoparticles for tunable, pH-sensitive and sustained drug release. Nanoscale 2015, 7, 9497–9504.

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by Shanghai Science and Technology Development Funds (Nos. 17XD1421900, 14411968100 and 17XD1424200) and Seed Fund of Renji Hospital of Shanghai Jiao Tong University School of Medicine (No. RJZZ16-010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Huang, Jun Zhu or Dannong He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Cheng, J., Zhang, Y. et al. A chemophotothermal and targeting multifunctional nanoprobe with a tumor-diagnosing ability. Nano Res. 11, 4333–4347 (2018). https://doi.org/10.1007/s12274-018-2021-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2021-0

Keywords

Navigation