Skip to main content
Log in

Extreme biomimetics: A carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide(IV) and its electrochemical applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Composites containing biological materials with nanostructured architecture have become of great interest in modern materials science, yielding both interesting chemical properties and inspiration for biomimetic research. Herein, we describe the preparation of a novel 3D nanostructured MnO2-based composite developed using a carbonized proteinaceous spongin template by an extreme biomimetics approach. The thermal stability of the spongin-based scaffold facilitated the formation of both carbonized material (at 650 °C with exclusion of oxygen) and manganese oxide with a defined nanoscale structure under 150 °C. Remarkably, the unique network of spongin fibers was maintained after pyrolysis and hydrothermal processing, yielding a novel porous support. The MnO2-spongin composite shows a bimodal pore distribution, with macropores originating from the spongin network and mesopores from the nanostructured oxidic coating. Interestingly, the composites also showed improved electrochemical properties compared to those of MnO2. Voltammetry cycling demonstrated the good stability of the material over more than 3,000 charging/discharging cycles. Additionally, electrochemical impedance spectroscopy revealed lower charge transfer resistance in the prepared materials. We demonstrate the potential of extreme biomimetics for developing a new generation of nanostructured materials with 3D centimeter-scale architecture for the storage and conversion of energy generated from renewable natural sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szatkowski, T.; Siwińska-Stefańska, K.; Wysokowski, M.; Stelling, A. L.; Joseph, Y.; Ehrlich, H.; Jesionowski, T. Immobilization of titanium(IV) oxide onto 3D spongin scaffolds of marine sponge origin according to Extreme Biomimetics principles for removal of C.I. Basic Blue 9. Biomimetics 2017, 2, 4.

    Google Scholar 

  2. Wysokowski, M.; Motylenko, M.; Beyer, J.; Makarova, A.; Stöcker, H.; Walter, J.; Galli, R.; Kaiser, S.; Vyalikh, D.; Bazhenov, V. V. et al. Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties. Nano Res. 2015, 8, 2288–2301.

    Article  CAS  Google Scholar 

  3. Tatur, J.; Hagedoorn, P. L.; Overeijnder, M. L.; Hagen, W. R. A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus. Extremophiles 2006, 10, 139–148.

    Article  CAS  Google Scholar 

  4. Sheng, W. Q.; Liu, J.; Liu, S. S.; Lu, Q.; Kaplan, D. L.; Zhu, H. S. One-step synthesis of biocompatible magnetite/silk fibroin core–shell nanoparticles. J. Mater. Chem. B 2014, 2, 7394–7402.

    Article  CAS  Google Scholar 

  5. Szatkowski, T.; Wysokowski, M.; Lota, G.; Peziak, D.; Bazhenov, V. V.; Nowaczyk, G.; Walter, J.; Molodtsov, S. L.; Stöcker, H.; Himcinschi, C. et al. Novel nanostructured hematite–spongin composite developed using an extreme biomimetic approach. RSC Adv. 2015, 5, 79031–79040.

    Article  CAS  Google Scholar 

  6. Pronzato, R. Sponge farming in the Mediterranean Sea: New perspectives. Mem. Queensl. Museum 1999, 44, 485–491.

    Google Scholar 

  7. Garrone, R. Phylogenesis of Connective Tissue: Morphological Aspects and Biosynthesis of Sponge Intercellular Matrix; Basel: New York, 1978.

    Google Scholar 

  8. Bergquist, P. R. Sponges; University of California Press: Berkeley, Los Angeles, 1978.

    Google Scholar 

  9. Louden, D.; Inderbitzin, S.; Peng, Z.; de Nys, R. Development of a new protocol for testing bath sponge quality. Aquaculture 2007, 271, 275–285.

    Article  Google Scholar 

  10. Szatkowski, T.; Jesionowski, T. Hydrothermal synthesis of spongin-based materials. In Extreme biomimetics; Ehrlich, H., Ed.; Springer International Publishing: Cham, 2017; pp 251–274.

    Chapter  Google Scholar 

  11. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  CAS  Google Scholar 

  12. Inagaki, M.; Yang, Y.; Kang, F. Y. Carbon nanofibers prepared via electrospinning. Adv. Mater. 2012, 24, 2547–2566.

    Article  CAS  Google Scholar 

  13. Li, Q.; Mahmood, N.; Zhu, J. H.; Hou, Y. L.; Sun, S. H. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today 2014, 9, 668–683.

    Article  CAS  Google Scholar 

  14. Wu, X. L.; Wen, T.; Guo, H. L.; Yang, S. B.; Wang, X. K.; Xu, A. W. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 2013, 7, 3589–3597.

    Article  CAS  Google Scholar 

  15. Singhal, R.; Chung, S. H.; Manthiram, A.; Kalra, V. A free-standing carbon nanofiber interlayer for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 4530–4538.

    Article  CAS  Google Scholar 

  16. Jeon, J. W.; Sharma, R.; Meduri, P.; Arey, B. W.; Schaef, H. T.; Lutkenhaus, J. L.; Lemmon, J. P.; Thallapally, P. K.; Nandasiri, M. I.; McGrail, B. P. et al. In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 7214–7222.

    Article  CAS  Google Scholar 

  17. Wissler, M. Graphite and carbon powders for electrochemical applications. J. Power Sources 2006, 156, 142–150.

    Article  CAS  Google Scholar 

  18. Raymundo-Piñero, E.; Leroux, F.; Béguin, F. A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv. Mater. 2006, 18, 1877–1882.

    Article  CAS  Google Scholar 

  19. Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon; Elsevier Science: Amsterdam, 2006.

    Book  Google Scholar 

  20. Ishimaru, K.; Hata, T.; Bronsveld, P.; Meier, D.; Imamura, Y. Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin. J. Mater. Sci. 2007, 42, 122–129.

    Article  CAS  Google Scholar 

  21. Deng, L. B.; Young, R. J.; Kinloch, I. A.; Abdelkader, A. M.; Holmes, S. M.; De Haro-Del Rio, D. A.; Eichhorn, S. J. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl. Mater. Interfaces 2013, 5, 9983–9990.

    Article  CAS  Google Scholar 

  22. Cho, S. Y.; Yun, Y. S.; Jin, H. J. Carbon nanofibers prepared by the carbonization of self-assembled cellulose nanocrystals. Macromol. Res. 2014, 22, 753–756.

    Article  CAS  Google Scholar 

  23. Cho, H. E.; Seo, S. J.; Khil, M. S.; Kim, H. Preparation of carbon nanoweb from cellulose nanowhisker. Fibers Polym. 2015, 16, 271–275.

    Article  CAS  Google Scholar 

  24. Li, Y. M.; Cui, D. X.; Tong, Y. J.; Xu, L. H. Study on structure and thermal stability properties of lignin during thermostabilization and carbonization. Int. J. Biol. Macromol. 2013, 62, 663–669.

    Article  CAS  Google Scholar 

  25. Foston, M.; Nunnery, G. A.; Meng, X. Z.; Sun, Q. N.; Baker, F. S.; Ragauskas, A. NMR a critical tool to study the production of carbon fiber from lignin. Carbon 2013, 52, 65–73.

    Article  CAS  Google Scholar 

  26. Sebbahi, S.; Ahmido, A.; Kifani-Sahban, F.; El Hajjaji, S.; Zoulalian, A. Preoxidation and activation of the lignin char: Carbonization and oxidation procedures. J. Eng. 2014, 2014, 972897.

    Article  Google Scholar 

  27. Cao, J.; Xiao, G.; Xu, X.; Shen, D. K.; Jin, B. S. Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Process. Technol. 2013, 106, 41–47.

    Article  CAS  Google Scholar 

  28. Snowdon, M. R.; Mohanty, A. K.; Misra, M. A study of carbonized lignin as an alternative to carbon black. ACS Sustain. Chem. Eng. 2014, 2, 1257–1263.

    Article  CAS  Google Scholar 

  29. Nogi, M.; Kurosaki, F.; Yano, H.; Takano, M. Preparation of nanofibrillar carbon from chitin nanofibers. Carbohydr. Polym. 2010, 81, 919–924.

    Article  CAS  Google Scholar 

  30. Nguyen, T. D.; Shopsowitz, K. E.; MacLachlan, M. J. Mesoporous nitrogen-doped carbon from nanocrystalline chitin assemblies. J. Mater. Chem. A 2014, 2, 5915–5921.

    Article  CAS  Google Scholar 

  31. Gao, Y. J.; Chen, X.; Zhang, J. G.; Yan, N. Chitin-derived mesoporous, nitrogen-containing carbon for heavy-metal removal and styrene epoxidation. ChemPlusChem 2015, 80, 1556–1564.

    Article  CAS  Google Scholar 

  32. Nata, I. F.; Wang, S. S. S.; Wu, T. M.; Lee, C. K. Carbonaceous hydrogels based on hydrothermal carbonization of glucose with chitin nanofibers. Soft Matter 2012, 8 (13), 3522–3525.

    Article  CAS  Google Scholar 

  33. Qian, W. J.; Sun, F. X.; Xu, Y. H.; Qiu, L. H.; Liu, C. H.; Wang, S. D.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 2014, 7, 379–386.

    Article  CAS  Google Scholar 

  34. Belarmino, D. D.; Ladchumananandasivam, R.; Belarmino, L. D.; de M. Pimentel, J. R.; da Rocha, B. G.; Galvão, A. O.; de Andrade, S. M. B. Physical and morphological structure of chicken feathers (keratin biofiber) in natural, chemically and thermally modified forms. Mater. Sci. Appl. 2012, 3, 887–893.

    CAS  Google Scholar 

  35. Chen, W.; Liu, X.; He, R. L.; Lin, T.; Zeng, Q. F.; Wang, X. G. Activated carbon powders from wool fibers. Powder Technol. 2013, 234, 76–83.

    Article  CAS  Google Scholar 

  36. Ogata, F.; Tominaga, H.; Kangawa, M.; Inoue1, K.; Kawasaki, N. Adsorption capacity of Cu(II) and Pb(II) onto carbon fiber produced from wool. J. Oleo Sci. 2012, 61, 149–154.

    Article  CAS  Google Scholar 

  37. Cho, S. Y.; Yun, Y. S.; Lee, S.; Jang, D.; Park, K. Y.; Kim, J. K.; Kim, B. H.; Kang, K.; Kaplan, D. L.; Jin, H. J. Carbonization of a stable ß-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun. 2015, 6, 7145.

    Article  Google Scholar 

  38. Zhang, J. W.; Cai, Y. R.; Zhong, Q. W.; Lai, D. Z.; Yao, J. M. Porous nitrogen-doped carbon derived from silk fibroin protein encapsulating sulfur as a superior cathode material for high-performance lithium–sulfur batteries. Nanoscale 2015, 7, 17791–17797.

    Article  CAS  Google Scholar 

  39. Lee, Y. H.; Lee, Y. F.; Chang, K. H.; Hu, C. C. Synthesis of N-doped carbon nanosheets from collagen for electrochemical energy storage/conversion systems. Electrochem. Commun. 2011, 13, 50–53.

    Article  CAS  Google Scholar 

  40. Lee, Y. H.; Li, F.; Chang, K. H.; Hu, C. C.; Ohsaka, T. Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2. Appl. Catal. B Environ. 2012, 126, 208–214.

    Article  CAS  Google Scholar 

  41. Deng, D. H.; Liao, X. P.; Shi, B. Synthesis of porous carbon fibers from collagen fiber. ChemSusChem 2008, 1, 298–301.

    Article  CAS  Google Scholar 

  42. Park, M.; Ryu, J.; Kim, Y.; Cho, J. Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: A highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy Environ. Sci. 2014, 7, 3727–3735.

    Article  CAS  Google Scholar 

  43. Alatalo, S. M.; Qiu, K. P.; Preuss, K.; Marinovic, A.; Sevilla, M.; Sillanpää, M.; Guo, X.; Titirici, M. M. Soy protein directed hydrothermal synthesis of porous carbon aerogels for electrocatalytic oxygen reduction. Carbon 2016, 96, 622–630.

    Article  CAS  Google Scholar 

  44. Ji, H. X.; Zhao, X.; Qiao, Z. H.; Jung, J.; Zhu, Y. W.; Lu, Y. L.; Zhang, L. L.; MacDonald, A. H.; Ruoff, R. S. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 2014, 5, 3317.

    Article  CAS  Google Scholar 

  45. Griffin, J. M.; Forse, A. C.; Tsai, W. Y.; Taberna, P. L.; Simon, P.; Grey, C. P. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 2015, 14, 812–819.

    Article  CAS  Google Scholar 

  46. Frackowiak, E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 2007, 9, 1774–1785.

    Article  CAS  Google Scholar 

  47. Subramanian, V.; Zhu, H. W.; Vajtai, R.; Ajayan, P. M.; Wei, B. Q. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207–20214.

    Article  CAS  Google Scholar 

  48. Al-Enizi, A. M.; Elzatahry, A. A.; Abdullah, A. M.; AlMaadeed, M. A.; Wang, J. X.; Zhao, D. Y.; Al-Deyab, S. Synthesis and electrochemical properties of nickel oxide/carbon nanofiber composites. Carbon 2014, 71, 276–283.

    Article  CAS  Google Scholar 

  49. Luan, F.; Wang, G. M.; Ling, Y. C.; Lu, X. H.; Wang, H. Y.; Tong, Y. X.; Liu, X. X.; Li, Y. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 2013, 5, 7984–7990.

    Article  CAS  Google Scholar 

  50. Gao, F.; Wei, Q.; Yang, J. X.; Bi, H.; Wang, M. T. Synthesis of graphene/nickel oxide composite with improved electrochemical performance in capacitors. Ionics 2013, 19, 1883–1889.

    Article  CAS  Google Scholar 

  51. Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett. 2012, 12, 2559–2567.

    Article  CAS  Google Scholar 

  52. Wang, X.; Han, X. D.; Lim, M. F.; Singh, N.; Gan, C. L.; Jan, M.; Lee, P. S. Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J. Phys. Chem. C 2012, 116, 12448–12454.

    Article  CAS  Google Scholar 

  53. Chang, S. K.; Zainal, Z.; Tan, K. B.; Yusof, N. A.; Yusoff, W. M. D. W.; Prabaharan, S. R. S. Nickel–cobalt oxide/activated carbon composite electrodes for electrochemical capacitors. Curr. Appl. Phys. 2012, 12, 1421–1428.

    Article  Google Scholar 

  54. Hsieh, C. T.; Lee, W. Y.; Lee, C. E.; Teng, H. Electrochemical capacitors fabricated with tin oxide/graphene oxide nanocomposites. J. Phys. Chem. C 2014, 118, 15146–15153.

    Article  CAS  Google Scholar 

  55. Puppa, L. D.; Komárek, M.; Bordas, F.; Bollinger, J. C.; Joussein, E. Adsorption of copper, cadmium, lead and zinc onto a synthetic manganese oxide. J. Colloid Interface Sci. 2013, 399, 99–106.

    Article  CAS  Google Scholar 

  56. Duan, L. A.; Sun, B. Z.; Wei, M. Y.; Luo, S. L.; Pan, F.; Xu, A. H.; Li, X. X. Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation. J. Hazard. Mater. 2015, 285, 356–365.

    Article  CAS  Google Scholar 

  57. Kuo, C. H.; Mosa, I. M.; Poyraz, A. S.; Biswas, S.; El-Sawy, A. M.; Song, W. Q.; Luo, Z.; Chen, S. Y.; Rusling, J. F.; He, J. et al. Robust mesoporous manganese oxide catalysts for water oxidation. ACS Catal. 2015, 5, 1693–1699.

    Article  CAS  Google Scholar 

  58. Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721.

    Article  CAS  Google Scholar 

  59. Liu, X. D.; Chen, C. Z.; Zhao, Y. Y.; Jia, B. A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J. Nanomater. 2013, 2013, 736375.

    Google Scholar 

  60. Truong, T. T.; Liu, Y. Z.; Ren, Y.; Trahey, L.; Sun, Y. G. Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium–air batteries. ACS Nano 2012, 6, 8067–8077.

    Article  CAS  Google Scholar 

  61. Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 2009, 9, 1002–1006.

    Article  CAS  Google Scholar 

  62. Xia, H.; Wang, Y.; Lin, J. Y.; Lu, L. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors. Nanoscale Res. Lett. 2012, 7, 33.

    Article  CAS  Google Scholar 

  63. Ahmed, K. A. M.; Huang, K. X. Synthesis, characterization and catalytic activity of birnessite type potassium manganese oxide nanotubes and nanorods. Mater. Chem. Phys. 2012, 133, 605–610.

    Article  CAS  Google Scholar 

  64. Yu, M. H.; Zhai, T.; Lu, X. H.; Chen, X. J.; Xie, S. L.; Li, W.; Liang, C. L.; Zhao, W. X.; Zhang, L. P.; Tong, Y. X. Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. J. Power Sources 2013, 239, 64–71.

    Article  CAS  Google Scholar 

  65. Yousefi, T.; Davarkhah, R.; Golikand, A. N.; Mashhadizadeh, M. H. Synthesis, characterization, and supercapacitor studies of manganese (IV) oxide nanowires. Mater. Sci. Semicond. Process. 2013, 16, 868–876.

    Article  CAS  Google Scholar 

  66. Liu, Z. P.; Ma, R. Z.; Ebina, Y.; Takada, K.; Sasaki, T. Synthesis and delamination of layered manganese oxide nanobelts. Chem. Mater. 2007, 19, 6504–6512.

    Article  CAS  Google Scholar 

  67. Zhao, G. X.; Li, J. X.; Jiang, L.; Dong, H. L.; Wang, X. K.; Hu, W. P. Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chem. Sci. 2012, 3, 433–437.

    Article  CAS  Google Scholar 

  68. Inamdar, A. I.; Jo, Y.; Kim, J.; Han, J.; Pawar, S. M.; Kalubarme, R. S.; Park, C. J.; Hong, J. P.; Park, Y. S.; Jung, W. et al. Synthesis and enhanced electrochemical supercapacitive properties of manganese oxide nanoflake electrodes. Energy 2015, 83, 532–538.

    Article  CAS  Google Scholar 

  69. Dang, L. Y.; Wei, C. Z.; Ma, H. F.; Lu, Q. Y.; Gao, F. Three-dimensional honeycomb-like networks of birnessite manganese oxide assembled by ultrathin two-dimensional nanosheets with enhanced Li-ion battery performances. Nanoscale 2015, 7, 8101–8109.

    Article  CAS  Google Scholar 

  70. Ma, J. P.; Cheng, Q. L.; Pavlinek, V.; Saha, P.; Li, C. Z. Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance. New J. Chem. 2013, 37, 722–728.

    Article  CAS  Google Scholar 

  71. Li, Q.; Sun, X.; Lozano, K.; Mao, Y. B. Asymmetric supercapacitors with dominant pseudocapacitance based on manganese oxide nanoflowers in a neutral aqueous electrolyte. RSC Adv. 2013, 3, 24886–24890.

    Article  CAS  Google Scholar 

  72. Zhang, L. L.; Wei, T. X.; Wang, W. J.; Zhao, X. S. Manganese oxide-carbon composite as supercapacitor electrode materials. Microporous Mesoporous Mater. 2009, 123, 260–267.

    Article  CAS  Google Scholar 

  73. Ma, S. B.; Ahn, K. Y.; Lee, E. S.; Oh, K. H.; Kim, K. B. Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon 2007, 45, 375–382.

    Article  CAS  Google Scholar 

  74. Lee, H. M.; Jeong, G. H.; Kang, D. W.; Kim, S. W.; Kim, C. K. Direct and environmentally benign synthesis of manganese oxide/graphene composites from graphite for electrochemical capacitors. J. Power Sources 2015, 281, 44–48.

    Article  CAS  Google Scholar 

  75. Zhao, X.; Zhang, L. L.; Murali, S.; Stoller, M. D.; Zhang, Q. H.; Zhu, Y. W.; Ruoff, R. S. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano 2012, 6, 5404–5412.

    Article  CAS  Google Scholar 

  76. Ma, S. B.; Kim, K. B. Manganese oxide/carbon nanotube nanocomposites for electrochemical energy storage applications. In Nanotechnology in advanced electrochemical power sources; Prabaharan, S. R. S., Michael, M. S., Eds.; CRC Press: Boca Raton, Florida, 2013; pp 281–316.

    Google Scholar 

  77. Xue, T.; Xu, C. L.; Zhao, D. D.; Li, X. H.; Li, H. L. Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates. J. Power Sources 2007, 164, 953–958.

    Article  CAS  Google Scholar 

  78. Wang, N.; Gao, Y.; Gong, J.; Ma, X. Y.; Zhang, X. L.; Guo, Y. H.; Qu, L. Y. Synthesis of manganese oxide hollow urchins with a reactive template of carbon spheres. Eur. J. Inorg. Chem. 2008, 2008, 3827–3832.

    Article  CAS  Google Scholar 

  79. Giovanoli, R.; Stähli, E.; Feitknecht, W. Über oxidhydroxide des vierwertigen mangans mit schichtengitter. 1. Mitteilung. natriummangan (II, III)manganat(IV). Helv. Chim. Acta 1970, 53, 209–220.

    Article  CAS  Google Scholar 

  80. Kurata, H.; Colliex, C. Electron-energy-loss core-edge structures in manganese oxides. Phys. Rev. B Condens Matter. 1993, 48, 2102–2108.

    Article  CAS  Google Scholar 

  81. Laffont, L.; Gibot, P. High resolution electron energy loss spectroscopy of manganese oxides: Application to Mn3O4 nanoparticles. Mater. Charact. 2010, 61, 1268–1273.

    Article  CAS  Google Scholar 

  82. Estradé, S.; Yedra, L.; López-Ortega, A.; Estrader, M.; Salazar-Alvarez, G.; Baró, M. D.; Nogués, J.; Peiró, F. Distinguishing the core from the shell in MnOx/MnOy and FeOx/MnOx core/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis. Micron 2012, 43, 30–36.

    Article  CAS  Google Scholar 

  83. Paterson, J. H.; Krivanek, O. L. Elnes of 3D transition-metal oxides: II. Variations with oxidation state and crystal structure. Ultramicroscopy 1990, 32, 319–325.

    CAS  Google Scholar 

  84. Rask, J. H.; Miner, B. A.; Buseck, P. R. Determination of manganese oxidation states in solids by electron energy-loss spectroscopy. Ultramicroscopy 1987, 21, 321–326.

    Article  CAS  Google Scholar 

  85. Manoubi, T.; Tencé, M.; Walls, M. G.; Colliex, C. Curve fitting methods for quantitative analysis in electron energy loss spectroscopy. Microsc. Microanal. Microstruct. 1990, 1, 23–39.

    Article  CAS  Google Scholar 

  86. Oku, M.; Hirokawa, K.; Ikeda, S. X-ray photoelectron spectroscopy of manganese—oxygen systems. J. Electron Spectros. Relat. Phenomena 1975, 7, 465–473.

    Article  CAS  Google Scholar 

  87. Nesbitt, H. W.; Banerjee, D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 1998, 83, 305–315.

    Article  CAS  Google Scholar 

  88. Liang, Y. R.; Wu, D. C.; Fu, R. W. Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. Sci. Rep. 2013, 3, 1119.

    Article  CAS  Google Scholar 

  89. Li, Z.; Zhang, L.; Amirkhiz, B. S.; Tan, X. H.; Xu, Z. W.; Wang, H. L.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2012, 2, 431–437.

    Article  CAS  Google Scholar 

  90. Yun, Y. S.; Cho, S. Y.; Shim, J.; Kim, B. H.; Chang, S. J.; Baek, S. J.; Huh, Y. S.; Tak, Y.; Park, Y. W.; Park, S. et al. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 2013, 25, 1993–1998.

    Article  CAS  Google Scholar 

  91. Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.

    Article  CAS  Google Scholar 

  92. Shukla, A. K.; Krüger, P.; Dhaka, R. S.; Sayago, D. I.; Horn, K.; Barman, S. R. Understanding the 2p core-level spectra of manganese: Photoelectron spectroscopy experiments and Anderson impurity model calculations. Phys. Rev. B 2007, 75, 235419.

    Article  CAS  Google Scholar 

  93. Seyama, H.; Tani, Y.; Miyata, N.; Soma, M.; Iwahori, K. Characterization of pebble surfaces coated with biogenic manganese oxides by SIMS, XPS and SEM. Appl. Surf. Sci. 2008, 255, 1509–1511.

    Article  CAS  Google Scholar 

  94. Molenda, J.; Marzec, J.; Swierczek, K.; Ojczyk, W.; Ziemnicki, M.; Molenda, M.; Drozdek, M.; Dziembaj, R. The effect of 3D substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel. Solid State Ionics 2004, 171, 215–227.

    Article  CAS  Google Scholar 

  95. Jiang, J. H.; Kucernak, A. Electrochemical supercapacitor material based on manganese oxide: Preparation and characterization. Electrochim. Acta 2002, 47, 2381–2386.

    Article  CAS  Google Scholar 

  96. Gardner, S. D.; Singamsetty, C. S. K.; Booth, G. L.; He, G. R.; Pittman Jr, C. U. Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon 1995, 33, 587–595.

    Article  CAS  Google Scholar 

  97. Yang, D. X.; Velamakannia, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47, 145–152.

    Article  CAS  Google Scholar 

  98. Scalese, S.; Mirabella, S.; Terrasi, A. XPS and RBS investigations of Si-Er-O interactions on a Si(1 0 0)-2x1 surface. Appl. Surf. Sci. 2003, 220, 231–237.

    Article  CAS  Google Scholar 

  99. Abbas, Q.; Ratajczak, P.; Babuchowska, P.; Le Comte, A.; Bélanger, D.; Brousse, T.; Béguin, F. Strategies to improve the performance of carbon/carbon capacitors in salt aqueous electrolytes. J. Electrochem. Soc. 2015, 162, A5148–A5157.

    Article  CAS  Google Scholar 

  100. Winter, M.; Brodd R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4240.

    Article  CAS  Google Scholar 

  101. Acznik, I.; Lota, K.; Sierczynska, A.; Lota, G. Carbon-supported manganese dioxide as electrode material for asymmetric electrochemical capacitors. Int. J. Electrochem. Sci. 2014, 9, 2518–2534.

    Google Scholar 

  102. Malak-Polaczyk, A.; Matei-Ghimbeu, C.; Vix-Guterl, C.; Frackowiak, E. Carbon/λ-MnO2 composites for supercapacitor electrodes. J. Solid State Chem. 2010, 183, 969–974.

    Article  CAS  Google Scholar 

  103. Patel, M. N.; Wang, X. Q.; Wilson, B.; Ferrer, D. A.; Dai, S.; Stevenson, K. J.; Johnston, K. P. Hybrid MnO2–disordered mesoporous carbon nanocomposites: Synthesis and characterization as electrochemical pseudocapacitor electrodes. J. Mater. Chem. 2010, 20, 390–398.

    Article  CAS  Google Scholar 

  104. Chen, Q.; Meng, Y. N.; Hu, C. G.; Zhao, Y.; Shao, H. B.; Chen, N.; Qu, L. T. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sources 2014, 247, 32–39.

    Article  CAS  Google Scholar 

  105. Gambou-Bosca, A.; Bélanger, D. Effect of the formulation of the electrode on the pore texture and electrochemical performance of the manganese dioxide-based electrode for application in a hybrid electrochemical capacitor. J. Mater. Chem. A 2014, 2, 6463–6473.

    Article  CAS  Google Scholar 

  106. Deng, L. J.; Hao, Z. P.; Wang, J. F.; Zhu, G.; Kang, L. P.; Liu, Z. H.; Yang, Z. P.; Wang, Z. L. Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. Electrochim. Acta 2013, 89, 191–198.

    Article  CAS  Google Scholar 

  107. Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498.

    Article  Google Scholar 

  108. Wang, T.; Zhu, J.; Chen, Y.; Yang, H. G.; Qin, Y.; Li, F.; Cheng, Q. F.; Yu, X. Z.; Xu, Z.; Lu, B. A. Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes. J. Mater. Chem. A 2017, 5, 4809–4817.

    Article  CAS  Google Scholar 

  109. Zhu, J.; Xu, Z.; Lu, B. A. Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high- performance supercapacitor and lithium-ion battery applications. Nano Energy 2014, 7, 114–123.

    Article  CAS  Google Scholar 

  110. Li, L.; Qin, Z. Y.; Wang, L. F.; Liu, H. J.; Zhu, M. F. Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor. J. Nanoparticle Res. 2010, 12, 2349–2353.

    Article  CAS  Google Scholar 

  111. Toupin, M.; Brousse, T.; Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Poznan University of Technology (Poland), Research Grant No. 03/32/DSPB/ 0706/2017 to T. Szatkowski, M. Wysokowski, and T. Jesionowski; the Ministry of Science and Higher Education, Grant No. 03/31/DSBP/0337 to K. Kopczyński, M. Graś and G. Lota; and the German Research Foundation (DFG) Grant HE 394-3 as well as the BHMZ Erich- Krueger-Foundation to H. Ehrlich. M. Wysokowski is supported by the Foundation for Polish Science (FNP)- START 097.2017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hermann Ehrlich or Teofil Jesionowski.

Electronic supplementary material

12274_2018_2008_MOESM1_ESM.pdf

Extreme biomimetics: A carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide(IV)and its electrochemical applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szatkowski, T., Kopczyński, K., Motylenko, M. et al. Extreme biomimetics: A carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide(IV) and its electrochemical applications. Nano Res. 11, 4199–4214 (2018). https://doi.org/10.1007/s12274-018-2008-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2008-x

Keywords

Navigation