Skip to main content
Log in

Low-dose exposure to graphene oxide significantly increases the metal toxicity to macrophages by altering their cellular priming state

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Owing to the novel physicochemical properties of graphene, materials such as graphene oxide (GO) are being developed for applications in various fields such as biomedicine. Nonetheless, considerable knowledge gaps still exist regarding the impact of GOs on environmental health and safety (EHS). Thus far, its secondary toxicity, synergistic effects, and mal-adaption have not been focused much upon. Here, we show that at low concentrations (that did not directly result in significant cytotoxicity), GO could greatly enhance metal toxicity in macrophages by altering their cellular priming state. Specifically, GO caused impairments to the cellular morphology and membrane integrity of macrophages, and remarkably enhanced the cellular uptake of Cd and other non-essential metal ions (such as Hg and Gd). Furthermore, upon low-dose GO pre-treatment, the uptake of Cd at a non-toxic concentration brought about a remarkable amount of oxidative stress in macrophages, and ultimately resulted in increased cell death. Mechanistic investigations illustrated that GO pre-treatment triggered cell death through apoptosis because of Cd exposure. Overall, this study’s results reveal a new path for understanding the impact of GOs on EHS through the perspective of its synergistic and secondary effects, previously unidentified mechanisms via which nanomaterials might pose detrimental effects on organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jahan, S.; Yusoff, I. B.; Alias, Y. B.; Bakar, A. F. B. A. Reviews of the toxicity behavior of five potential engineered nanomaterials (ENMs) into the aquatic ecosystem. Toxicol. Rep. 2017, 4, 211–220.

    Article  Google Scholar 

  2. Xia, T.; Zhu, Y.; Mu, L.; Zhang, Z. F.; Liu, S. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century. Natl. Sci. Rev. 2016, 3, 416–429.

    Google Scholar 

  3. Wu, T. S.; Tang, M. Review of the effects of manufactured nanoparticles on mammalian target organs. J. Appl. Toxicol. 2018, 38, 25–40.

    Article  Google Scholar 

  4. Libralato, G.; Galdiero, E.; Falanga, A.; Carotenuto, R.; de Alteriis, E.; Guida, M. Toxicity effects of functionalized quantum dots, gold and polystyrene nanoparticles on target aquatic biological models: A review. Molecules 2017, 22, 1439.

    Article  Google Scholar 

  5. Bostan, H. B.; Rezaee, R.; Valokala, M. G.; Tsarouhas, K.; Golokhvast, K.; Tsatsakis, A. M.; Karimi, G. Cardiotoxicity of nano-particles. Life Sci. 2016, 165, 91–99.

    Article  Google Scholar 

  6. Higashisaka, K.; Nagano, K.; Yoshioka, Y.; Tsutsumi, Y. Nano-safety research: Examining the associations among the biological effects of nanoparticles and their physicochemical properties and kinetics. Biol. Pharm. Bull. 2017, 40, 243–248.

    Article  Google Scholar 

  7. Krug, H. F. Nanosafety research—Are we on the right track? Angew. Chem., Int. Ed. 2014, 53, 12304–12319.

    Google Scholar 

  8. Valsami-Jones, E.; Lynch, I. How safe are nanomaterials? Science 2015, 350, 388–389.

    Article  Google Scholar 

  9. Orecchioni, M.; Bedognetti, D.; Newman, L.; Fuoco, C.; Spada, F.; Hendrickx, W.; Marincola, F. M.; Sgarrella, F.; Rodrigues, A. F.; Ménard-Moyon, C. et al. Single-cell mass cytometry and transcriptome profiling reveal the impact of graphene on human immune cells. Nat. Commun. 2017, 8, 1109.

    Article  Google Scholar 

  10. Ema, M.; Gamo, M.; Honda, K. A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regul. Toxicol. Pharm. 2017, 85, 7–24.

    Article  Google Scholar 

  11. Ma, J.; Li, R. B.; Liu, Y.; Qu, G. B.; Liu, J.; Guo, W. L.; Song, H. Y.; Li, X. H.; Liu, Y. J.; Xia, T. et al. Carbon nanotubes disrupt iron homeostasis and induce anemia of inflammation through inflammatory pathway as a secondary effect distant to their portal-of-entry. Small 2017, 13, 1603830.

    Article  Google Scholar 

  12. Ma, J.; Li, R. B.; Qu, G. B.; Liu, H. Y.; Yan, B.; Xia, T.; Liu, Y. J.; Liu, S. J. Carbon nanotubes stimulate synovial inflammation by inducing systemic pro-inflammatory cytokines. Nanoscale 2016, 8, 18070–18086.

    Article  Google Scholar 

  13. Chen, Y. J.; Wu, Y. K.; Sun, B. B.; Liu, S. J.; Liu, H. Y. Two-dimensional nanomaterials for cancer nanotheranostics. Small 2017, 13, 1603446.

    Article  Google Scholar 

  14. Wang, K.; Ruan, J.; Song, H.; Zhang, J. L.; Wo, Y.; Guo, S. W.; Cui, D. X. Biocompatibility of graphene oxide. Nanoscale Res. Lett. 2011, 6, 8.

    Google Scholar 

  15. Khan, A.; Wang, J.; Li, J.; Wang, X. X.; Chen, Z. S.; Alsaedi, A.; Hayat, T.; Chen, Y. T.; Wang, X. K. The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: A review. Environ. Sci. Pollut. Res. Int. 2017, 24, 7938–7958.

    Article  Google Scholar 

  16. Zhao, H.; Ding, R. H.; Zhao, X.; Li, Y. W.; Qu, L. L.; Pei, H.; Yildirimer, L.; Wu, Z. W.; Zhang, W. X. Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov. Today 2017, 22, 1302–1317.

    Article  Google Scholar 

  17. Ema, M.; Gamo, M.; Honda, K. A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regul. Toxicol. Pharmacol. 2017, 85, 7–24.

    Article  Google Scholar 

  18. Zhao, J.; Wang, Z. Y.; White, J. C.; Xing, B. S. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 2014, 48, 9995–10009.

    Article  Google Scholar 

  19. Cerrillo, C.; Barandika, G.; Igartua, A.; Areitioaurtena, O.; Mendoza, G. Key challenges for nanotechnology: Standardization of ecotoxicity testing. J. Environ. Sci. Health C 2017, 35, 104–126.

    Article  Google Scholar 

  20. Bengtson, S.; Knudsen, K. B.; Kyjovska, Z. O.; Berthing, T.; Skaug, V.; Levin, M.; Koponen, I. K.; Shivayogimath, A.; Booth, T. J.; Alonso, B. et al. Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide. PLoS One 2017, 12, e0178355.

    Article  Google Scholar 

  21. Zhang, X. L.; Zhou, Q. X.; Zou, W.; Hu, X. G. Molecular mechanisms of developmental toxicity induced by graphene oxide at predicted environmental concentrations. Environ. Sci. Technol. 2017, 51, 7861–7871.

    Article  Google Scholar 

  22. Mittal, S.; Kumar, V.; Dhiman, N.; Chauhan, L. K. S.; Pasricha, R.; Pandey, A. K. Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress. Sci. Rep. 2017, 7, 39548.

    Google Scholar 

  23. Lu, C. J.; Jiang, X. F.; Junaid, M.; Ma, Y. B.; Jia, P. P.; Wang, H. B.; Pei, D. S. Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo. Chemosphere 2017, 184, 795–805.

    Article  Google Scholar 

  24. Radunovic, M.; De Colli, M.; De Marco, P.; Di Nisio, C.; Fontana, A.; Piattelli, A.; Cataldi, A.; Zara, S. Graphene oxide enrichment of collagen membranes improves DPSCs differentiation and controls inflammation occurrence. J. Biomed. Mater. Res. A 2017, 105, 2312–2320.

    Article  Google Scholar 

  25. Tabish, T. A.; Pranjol, M. Z. I.; Hayat, H.; Rahat, A. A. M.; Abdullah, T. M.; Whatmore, J. L.; Zhang, S. W. In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells. Nanotechnology 2017, 28, 504001.

    Article  Google Scholar 

  26. Sanchez, V. C.; Jachak, A.; Hurt, R. H.; Kane, A. B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chem. Res. Toxicol. 2012, 25, 15–34.

    Article  Google Scholar 

  27. Ou, L. L.; Song, B.; Liang, H. M.; Liu, J.; Feng, X. L.; Deng, B.; Sun, T.; Shao, L. Q. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 2016, 13, 57.

    Article  Google Scholar 

  28. Zhao, J.; Wang, Z. Y.; White, J. C.; Xing, B. S. Graphene in the aquatic environment: Adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 2014, 48, 9995–10009.

    Article  Google Scholar 

  29. Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182.

    Article  Google Scholar 

  30. Nawrot, T. S.; Staessen, J. A.; Roels, H. A.; Munters, E.; Cuypers, A.; Richart, T.; Ruttens, A.; Smeets, K.; Clijsters, H.; Vangronsveld, J. Cadmium exposure in the population: From health risks to strategies of prevention. Biometals 2010, 23, 769–782.

    Article  Google Scholar 

  31. Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999, 11, 771–778.

    Article  Google Scholar 

  32. Zhu, J. Q.; Xu, M.; Gao, M.; Zhang, Z. H.; Xu, Y.; Xia, T.; Liu, S. J. Graphene oxide induced perturbation to plasma membrane and cytoskeletal meshwork sensitize cancer cells to chemotherapeutic agents. ACS Nano 2017, 11, 2637–2651.

    Article  Google Scholar 

  33. Xu, M.; Zhu, J. Q.; Wang, F. F.; Xiong, Y. J.; Wu, Y. K.; Wang, Q. Q.; Weng, J.; Zhang, Z. H.; Chen, W.; Liu, S. J. Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: Poly(acrylic acid)-functionalization is superior to PEGylation. ACS Nano 2016, 10, 3267–3281.

    Article  Google Scholar 

  34. Wang, A. X.; Pu, K. F.; Dong, B.; Liu, Y.; Zhang, L. M.; Zhang, Z. J.; Duan, W.; Zhu, Y. M. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. J. Appl. Toxicol. 2013, 33, 1156–1164.

    Article  Google Scholar 

  35. Luo, N.; Weber, J. K.; Wang, S.; Luan, B. Q.; Yue, H.; Xi, X. B.; Du, J.; Yang, Z. X.; Wei, W.; Zhou, R. H. et al. PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nat. Commun. 2017, 8, 14537.

    Article  Google Scholar 

  36. Bardhan, N. M.; Kumar, P. V.; Li, Z. Y.; Ploegh, H. L.; Grossman, J. C.; Belcher, A. M.; Chen, G. Y. Enhanced cell capture on functionalized graphene oxide nanosheets through oxygen clustering. ACS Nano 2017, 11, 1548–1558.

    Article  Google Scholar 

  37. Wu, C. H.; He, Q. M.; Zhu, A. N.; Yang, H.; Liu, Y. Y. Probing the protein conformation and adsorption behaviors in nanographene oxide-protein complexes. J. Nanosci. Nanotechnol. 2014, 14, 2591–2598.

    Article  Google Scholar 

  38. Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y. N.; Valle, R. P.; Zuo, Y. Y.; Xia, T.; Liu, S. J. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano 2015, 9, 10498–10515.

    Article  Google Scholar 

  39. Hong, S.; Bielinska, A. U.; Mecke, A.; Keszler, B.; Beals, J. L.; Shi, X. Y.; Balogh, L.; Orr, B. G.; Baker, J. R., Jr.; Banaszak Holl, M. M. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: Hole formation and the relation to transport. Bioconjugate Chem. 2004, 15, 774–782.

    Article  Google Scholar 

  40. Freisinger, E.; Vašák, M. Cadmium in metallothioneins. Met. Ions Life Sci. 2013, 11, 339–371.

    Article  Google Scholar 

  41. Xu, M.; Yang, L. M.; Wang, Q. Q. Chemical interactions of mercury species and some transition and noble metals towards metallothionein (Zn7MT-2) evaluated using SEC/ICP-MS, RP-HPLC/ESI-MS and MALDI-TOF-MS. Metallomics 2013, 5, 855–860.

    Article  Google Scholar 

  42. Marrocco, I.; Altieri, F.; Peluso, I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid. Med. Cell. Longev. 2017, 2017, Article ID 6501046.

    Article  Google Scholar 

  43. Monti, D. M.; De Simone, G.; Langella, E.; Supuran, C. T.; Di Fiore, A.; Monti, S. M. Insights into the role of reactive sulfhydryl groups of carbonic anhydrase III and VII during oxidative damage. J. Enzyme Inhib. Med. Chem. 2017, 32, 5–12.

    Article  Google Scholar 

  44. Tummers, B.; Green, D. R. Caspase-8: Regulating life and death. Immunol. Rev. 2017, 277, 76–89.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2014CB932000), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB14000000), the National Natural Science Foundation of China (Nos. 21425731, 21425729, 21637004, 21407169, 21077128 and 21577097), the Science & Technology Development Fund of Tianjin Education Commission for Higher Education (No. 2017KJ209) and China Postdoctoral Science Foundation funded project (No. H037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen or Sijin Liu.

Electronic supplementary material

12274_2018_1996_MOESM1_ESM.pdf

Low-dose exposure to graphene oxide significantly increases the metal toxicity to macrophages by altering their cellular priming state

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Xu, M., Wang, F. et al. Low-dose exposure to graphene oxide significantly increases the metal toxicity to macrophages by altering their cellular priming state. Nano Res. 11, 4111–4122 (2018). https://doi.org/10.1007/s12274-018-1996-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-1996-x

Keywords

Navigation