Skip to main content
Log in

In situ observation of atomic movement in a ferroelectric film under an external electric field and stress

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atomic movement under application of external stimuli (i.e., electric field or mechanical stress) in oxide materials has not been observed due to a lack of experimental methods but has been well known to determine the electric polarization. Here, we investigated atomic movement arising from the ferroelectric response of BiFeO3 thin films under the effect of an electric field and stress in real time using a combination of switching spectroscopy, time-resolved X-ray microdiffraction, and in situ stress engineering. Under an electric field applied to a BiFeO3 film, the hysteresis loop of the reflected X-ray intensity was found to result from the opposing directions of displaced atoms between the up and down polarization states. An additional shift of atoms arising from the linearly increased dielectric component of the polarization in BiFeO3 was confirmed through gradual reduction of the diffracted X-ray intensity. The electric-field-induced displacement of oxygen atoms was found to be larger than that of Fe atom for both ferroelectric switching and increase of the polarization. The effect of external stress on the BiFeO3 thin film, which was controlled by applying an electric field to the highly piezoelectric substrate, showed smaller atomic shifts than for the case of applying an electric field to the film, despite the similar tetragonality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahams, S. C.; Kurtz, S. K.; Jamieson, P. B. Atomic displacement relationship to curie temperature and spontaneous polarization in displacive ferroelectrics. Phys. Rev. 1968, 172, 551–553.

    Article  Google Scholar 

  2. Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J.-W.; Patzner, J. R. et al. Polar metals by geometric design. Nature 2016, 533, 68–72.

    Article  Google Scholar 

  3. Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722.

    Article  Google Scholar 

  4. Lee, H. J.; Lee, S. S.; Kwak, J. H.; Kim, Y.-M.; Jeong, H. Y.; Borisevich, A. Y.; Lee, S. Y.; Noh, D. Y.; Kwon, O.; Kim, Y. et al. Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film. Sci. Rep. 2016, 6, 38724.

    Article  Google Scholar 

  5. Jo, J. Y.; Han, H. S.; Yoon, J. G.; Song, T. K.; Kim, S. H.; Noh, T. W. Domain switching kinetics in disordered ferroelectric thin films. Phys. Rev. Lett. 2007, 99, 267602.

    Article  Google Scholar 

  6. Jo, J. Y.; Sichel, R. J.; Lee, H. N.; Nakhmanson, S. M.; Dufresne, E. M.; Evans, P. G. Piezoelectricity in the dielectric component of nanoscale dielectric-ferroelectric superlattices. Phys. Rev. Lett. 2010, 104, 207601.

    Article  Google Scholar 

  7. Ederer, C.; Spaldin, N. A. Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 2005, 95, 257601.

    Article  Google Scholar 

  8. Do, D.-H.; Evans, P. G.; Isaacs, E. D.; Kim, D. M.; Eom, C. B.; Dufresne, E. M. Structural visualization of polarization fatigue in epitaxial ferroelectric oxide devices. Nat. Mater. 2004, 3, 365–369.

    Article  Google Scholar 

  9. Jo, J. Y.; Chen, P.; Sichel, R. J.; Baek, S. H.; Smith, R. T.; Balke, N.; Kalinin, S. V.; Holt, M. V.; Maser, J.; Evans-Lutterodt, K. et al. Structural consequences of ferroelectric nanolithography. Nano Lett. 2011, 11, 3080–3084.

    Article  Google Scholar 

  10. Chen, P.; Sichel-Tissot, R. J.; Young Jo, J.; Smith, R. T.; Baek, S. H.; Saenrang, W.; Eom, C. B.; Sakata, O.; Dufresne, E. M.; Evans, P. G. Nonlinearity in the high-electric-field piezoelectricity of epitaxial BiFeO3 on SrTiO3. Appl. Phys. Lett. 2012, 100, 062906.

    Article  Google Scholar 

  11. Guo, E. J.; Roth, R.; Herklotz, A.; Hesse, D.; Dörr, K. Ferroelectric 180° domain wall motion controlled by biaxial strain. Adv. Mater. 2015, 27, 1615–1618.

    Article  Google Scholar 

  12. Lee, H. J.; Guo, E.-J.; Kwak, J. H.; Hwang, S. H.; Dörr, K.; Lee, J. H.; Young Jo, J. Controllable piezoelectricity of Pb(Zr0.2Ti0.8)O3 film via in situ misfit strain. Appl. Phys. Lett. 2017, 110, 032901.

    Article  Google Scholar 

  13. Biegalski, M. D.; Kim, D. H.; Choudhury, S.; Chen, L. Q.; Christen, H. M.; Dörr, K. Strong strain dependence of ferroelectric coercivity in a BiFeO3 film. Appl. Phys. Lett. 2011, 98, 142902.

    Article  Google Scholar 

  14. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  15. Kresse, G.; Furthmu, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  16. Jesse, S.; Baddorf, A. P.; Kalinin, S. V. Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 2006, 88, 062908.

    Article  Google Scholar 

  17. Jo, J. Y.; Chen, P.; Sichel, R. J.; Callori, S. J.; Sinsheimer, J.; Dufresne, E. M.; Dawber, M.; Evans, P. G. Nanosecond dynamics of ferroelectric/dielectric superlattices. Phys. Rev. Lett. 2011, 107, 055501.

    Article  Google Scholar 

  18. Guo, E. J.; Dörr, K.; Herklotz, A. Strain controlled ferroelectric switching time of BiFeO3 capacitors. Appl. Phys. Lett. 2012, 101, 242908.

    Article  Google Scholar 

  19. Jia, C.-L.; Mi, S.-B.; Urban, K.; Vrejoiu, I.; Alexe, M.; Hesse, D. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 2008, 7, 57–61.

    Article  Google Scholar 

  20. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 1992, 358, 136–138.

    Article  Google Scholar 

  21. Jia, C.-L.; Nagarajan, V.; He, J.-Q.; Houben, L.; Zhao, T.; Ramesh, R.; Urban, K.; Waser, R. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 2007, 6, 64–69.

    Article  Google Scholar 

  22. Gao, P.; Liu, H.-J.; Huang, Y.-L.; Chu, Y.-H.; Ishikawa, R.; Feng, B.; Jiang, Y.; Shibata, N.; Wang, E.-G.; Ikuhara, Y. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films. Nat. Commun. 2016, 7, 11318.

    Article  Google Scholar 

  23. Singh, M. K.; Ryu, S.; Jang, H. M. Polarized Raman scattering of multiferroic BiFeO3 thin films with pseudotetragonal symmetry. Phys. Rev. B 2005, 72, 132101.

    Article  Google Scholar 

  24. Tütüncü, H. M.; Srivastava, G. P. Electronic structure and lattice dynamical properties of different tetragonal phases of BiFeO3. Phys. Rev. B 2008, 78, 235209.

    Article  Google Scholar 

  25. Beekman, C.; Siemons, W.; Ward, T. Z.; Chi, M.; Howe, J.; Biegalski, M. D.; Balke, N.; Maksymovych, P.; Farrar, A. K.; Romero, J. B. et al. Phase transitions, phase coexistence, and piezoelectric switching behavior in highly strained BiFeO3 films. Adv. Mater. 2013, 25, 5561–5567.

    Article  Google Scholar 

Download references

Acknowledgements

J. Y. J. acknowledges the support through grants from the National Research Foundation of Korea (NRF) funded by the Korean government (Nos. NRF-2014R1A1A3053111, NRF-016R1D1A1A02937051, and NRF-2017K1A3A7A09016388), the GRI (GIST Research Institute) project by GIST, the TJ Park Science Fellowship of the POSCO TJ Park Foundation, MSIO & PAL, Korea, and Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2017M3D1A1040828). H. J. L. acknowledges support by the NRF (No. 2017R1A6A3A11030959). E. J. G. and K. D. acknowledge support by Deutsche Forschungsgemeinschaft (DFG) under the grant SFB 762 Functionality of Oxide Interfaces. In addition, E. J. G. is supported by the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Young Jo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.J., Guo, EJ., Min, T. et al. In situ observation of atomic movement in a ferroelectric film under an external electric field and stress. Nano Res. 11, 3824–3832 (2018). https://doi.org/10.1007/s12274-017-1956-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1956-x

Keywords

Navigation