Skip to main content
Log in

Surface charge tunable nanoparticles for TNF-α siRNA oral delivery for treating ulcerative colitis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanoparticle (NP) drug delivery systems have been successfully designed and implemented to orally deliver siRNAs for inflammatory disorders. However, the influence of surface charge on orally administered siRNA nanocarriers has not been investigated. In this study, we prepared structurally related poly(ethylene glycol)-block-poly(lactic-co-glycolic acid) (PEG5K-b-PLGA10K) NPs with the assistance of a synthesized lipid featuring surface amine groups for subsequent charge tuning. NPs were prepared by a double emulsion method, and their surface charge could be tuned and controlled by a succinylation reaction to yield NPs with different surface charges, while maintaining their size and composition. The prepared NPs were termed as aminated NPs (ANPs), plain NPs (PNPs), or carboxylated NPs (CNPs) based on their surface charge. All NPs exhibited the desired structural stability and siRNA integrity after enzymatic degradation. In vivo studies showed that ANPs significantly accumulated in inflamed colons, and they were successful in decreasing TNF-α secretion and mRNA expression levels while maintaining colonic histology in a murine model of acute ulcerative colitis (UC). This study described a methodology to modify the surface charge of siRNA-encapsulating polymeric NPs and highlighted the influence of surface charge on oral delivery of siRNA for localized inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podolsky, D. K. Inflammatory bowel disease. N. Engl. J. Med. 2002, 347, 417–429.

    Article  Google Scholar 

  2. Ardizzone, S.; Bianchi Porro, G. Inflammatory bowel disease: New insights into pathogenesis and treatment. J. Intern. Med. 2002, 252, 475–496.

    Article  Google Scholar 

  3. Peyrin-Biroulet, L. Anti-TNF therapy in inflammatory bowel diseases: A huge review. Minerva Gastroenterol. Dietol. 2010, 56, 233–243.

    Google Scholar 

  4. Dretzke, J.; Edlin, R.; Round, J.; Connock, M.; Hulme, C.; Czeczot, J.; Fry-Smith, A.; McCabe, C.; Meads, C. A systematic review and economic evaluation of the use of tumour necrosis factor-alpha (TNF-alpha) inhibitors, adalimumab and infliximab, for Crohn’s disease. Health Technol. Assess. 2011, 15, 1–244.

    Article  Google Scholar 

  5. Nielsen, O. H. New strategies for treatment of inflammatory bowel disease. Front. Med. (Lausanne) 2014, 1, 3.

    Google Scholar 

  6. Wilson, D. S.; Dalmasso, G.; Wang, L. X.; Sitaraman, S. V.; Merlin, D.; Murthy, N. Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nat. Mater. 2010, 9, 923–928.

    Article  Google Scholar 

  7. McCarthy, J.; O’Neill, M. J.; Bourre, L.; Walsh, D.; Quinlan, A.; Hurley, G.; Ogier, J.; Shanahan, F.; Melgar, S.; Darcy, R. et al. Gene silencing of TNF-alpha in a murine model of acute colitis using a modified cyclodextrin delivery system. J. Control. Release 2013, 168, 28–34.

    Article  Google Scholar 

  8. Laroui, H.; Theiss, A. L.; Yan, Y. T.; Dalmasso, G.; Nguyen, H. T. T.; Sitaraman, S. V.; Merlin, D. Functional TNFα gene silencing mediated by polyethyleneimine/TNFα siRNA nanocomplexes in inflamed colon. Biomaterials 2011, 32, 1218–1228.

    Article  Google Scholar 

  9. Xiao, B.; Laroui, H.; Ayyadurai, S.; Viennois, E.; Charania, M. A.; Zhang, Y. C.; Merlin, D. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials 2013, 34, 7471–7482.

    Article  Google Scholar 

  10. Kriegel, C.; Amiji, M. Oral TNF-α gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. J. Control. Release 2011, 150, 77–86.

    Article  Google Scholar 

  11. He, C. B.; Yin, L. C.; Tang, C.; Yin, C. H. Trimethyl chitosancysteine nanoparticles for systemic delivery of TNF-α siRNA via oral and intraperitoneal routes. Pharm. Res. 2013, 30, 2596–2606.

    Article  Google Scholar 

  12. Aouadi, M.; Tesz, G. J.; Nicoloro, S. M.; Wang, M. X.; Chouinard, M.; Soto, E.; Ostroff, G. R.; Czech, M. P. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009, 458, 1180–1184.

    Article  Google Scholar 

  13. Kriegel, C.; Amiji, M. M. Dual TNF-α/Cyclin D1 gene silencing with an oral polymeric microparticle system as a novel strategy for the treatment of inflammatory bowel disease. Clin. Transl. Gastroenterol. 2011, 2, e2.

    Article  Google Scholar 

  14. Zhang, J.; He, C. B.; Tang, C.; Yin, C. H. Ternary polymeric nanoparticles for oral siRNA delivery. Pharm. Res. 2013, 30, 1228–1239.

    Article  Google Scholar 

  15. He, C. B.; Yin, L. C.; Tang, C.; Yin, C. H. Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials 2013, 34, 2843–2854.

    Article  Google Scholar 

  16. He, C. B.; Yin, L. C.; Song, Y. D.; Tang, C.; Yin, C. H. Optimization of multifunctional chitosan-siRNA nanoparticles for oral delivery applications, targeting TNF-α silencing in rats. Acta Biomater. 2015, 17, 98–106.

    Article  Google Scholar 

  17. Chu, S.; Tang, C.; Yin, C. H. Effects of mannose density on in vitro and in vivo cellular uptake and RNAi efficiency of polymeric nanoparticles. Biomaterials 2015, 52, 229–239.

    Article  Google Scholar 

  18. Cheng, W. Y.; Tang, C.; Yin, C. H. Effects of particle size and binding affinity for small interfering RNA on the cellular processing, intestinal permeation and anti-inflammatory efficacy of polymeric nanoparticles. J. Gene Med. 2015, 17, 244–256.

    Article  Google Scholar 

  19. Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.

    Article  Google Scholar 

  20. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    Article  Google Scholar 

  21. Wang, H. X.; Zuo, Z. Q.; Du, J. Z.; Wang, Y. C.; Sun, R.; Cao, Z. T.; Ye, X. D.; Wang, J. L.; Leong, K. W.; Wang, J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today 2016, 11, 133–144.

    Article  Google Scholar 

  22. Barteau, B.; Chèvre, R.; Letrou-Bonneval, E.; Labas, R.; Lambert, O.; Pitard, B. Physicochemical parameters of non-viral vectors that govern transfection efficiency. Curr. Gene Ther. 2008, 8, 313–323.

    Article  Google Scholar 

  23. Zhu, K. J.; Lin, X. Z.; Yang, S. L. Preparation, characterization, and properties of polylactide (PLA)–poly(ethylene glycol)(PEG) copolymers: A potential drug carrier. J. Appl. Polym. Sci. 1990, 39, 1–9.

    Article  Google Scholar 

  24. Li, H. J.; Wang, H. X.; Sun, C. Y.; Du, J. Z.; Wang, J. Shell-detachable nanoparticles based on a light-responsive amphiphile for enhanced siRNA delivery. RSC Adv. 2014, 4, 1961–1964.

    Article  Google Scholar 

  25. Yang, X. Z.; Dou, S.; Sun, T. M.; Mao, C. Q.; Wang, H. X.; Wang, J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J. Control. Release 2011, 156, 203–211.

    Article  Google Scholar 

  26. Wang, X. Y.; Chen, Y. H.; Dahmani, F. Z.; Yin, L. F.; Zhou, J. P.; Yao, J. Amphiphilic carboxymethyl chitosanquercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials 2014, 35, 7654–7665.

    Article  Google Scholar 

  27. Erben, U.; Loddenkemper, C.; Doerfel, K.; Spieckermann, S.; Haller, D.; Heimesaat, M. M.; Zeitz, M.; Siegmund, B.; Kühl, A. A. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int. J. Clin. Exp. Pathol. 2014, 7, 4557–4576.

    Google Scholar 

  28. Walczak, A. P.; Hendriksen, P. J.; Woutersen, R. A.; van der Zande, M.; Undas, A. K.; Helsdingen, R.; van den Berg, H. H.; Rietjens, I. M.; Bouwmeester, H. Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats. J. Nanopart. Res. 2015, 17, 231.

    Article  Google Scholar 

  29. Fang, N.; Wang, J.; Mao, H. Q.; Leong, K. W.; Chan, V. BHEM-Chol/DOPE liposome induced perturbation of phospholipid bilayer. Colloids Surf. B: Biointerfaces 2003, 29, 233–245.

    Article  Google Scholar 

  30. Liu, Y.; Zhu, Y. H.; Mao, C. Q.; Dou, S.; Shen, S.; Tan, Z. B.; Wang, J. Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles. J. Control. Release 2014, 192, 114–121.

    Article  Google Scholar 

  31. Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm. 2015, 496, 173–190.

    Article  Google Scholar 

  32. Roy, R.; Hohng, S.; Ha, T. A practical guide to singlemolecule FRET. Nat. Methods 2008, 5, 507–516.

    Article  Google Scholar 

  33. Tobıo, M.; Sánchez, A.; Vila, A.; Soriano, I.; Evora, C.; Vila-Jato, J. L.; Alonso, M. J. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf. B: Biointerfaces 2000, 18, 315–323.

    Article  Google Scholar 

  34. Lai, S. K.; Wang, Y. Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 2009, 61, 158–171.

    Article  Google Scholar 

  35. Ensign, L. M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012, 64, 557–570.

    Article  Google Scholar 

  36. Xu, Q. G.; Ensign, L. M.; Boylan, N. J.; Schön, A.; Gong, X. Q.; Yang, J. C.; Lamb, N. W.; Cai, S. T.; Yu, T.; Freire, E. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano 2015, 9, 9217–9227.

    Article  Google Scholar 

  37. Zhang, J.; Tang, C.; Yin, C. H. Galactosylated trimethyl chitosan–cysteine nanoparticles loaded with Map4k4 siRNA for targeting activated macrophages. Biomaterials 2013, 34, 3667–3677.

    Article  Google Scholar 

  38. Zuo, L. S.; Huang, Z.; Dong, L.; Xu, L. Q.; Zhu, Y. A.; Zeng, K.; Zhang, C. Y.; Chen, J. N.; Zhang, J. F. Targeting delivery of anti-TNFα oligonucleotide into activated colonic macrophages protects against experimental colitis. Gut 2010, 59, 470–479.

    Article  Google Scholar 

  39. Lamprecht, A. Nanomedicines in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 195–204.

    Article  Google Scholar 

  40. Jubeh, T. T.; Barenholz, Y.; Rubinstein, A. Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes. Pharm. Res. 2004, 21, 447–453.

    Article  Google Scholar 

  41. Tirosh, B.; Khatib, N.; Barenholz, Y.; Nissan, A.; Rubinstein, A. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol. Pharmaceutics 2009, 6, 1083–1091.

    Article  Google Scholar 

  42. Zhang, S. F.; Ermann, J.; Succi, M. D.; Zhou, A.; Hamilton, M. J.; Cao, B.; Korzenik, J. R.; Glickman, J. N.; Vemula, P. K.; Glimcher, L. H. et al. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci. Transl. Med. 2015, 7, 300ra128.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2015CB932100), the National Natural Science Foundation of China (Nos. 51503195, 51390482 and 51633008), the National Key R&D Program of China (No. 2017YFA0205600), the Fundamental Research Funds for the Central Universities, and 111 Project (No. B17018). S.I. is also grateful for the CAS-TWAS president fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojiao Du.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, S., Du, X., Wang, J. et al. Surface charge tunable nanoparticles for TNF-α siRNA oral delivery for treating ulcerative colitis. Nano Res. 11, 2872–2884 (2018). https://doi.org/10.1007/s12274-017-1918-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1918-3

Keywords

Navigation