Skip to main content
Log in

Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cancer is one of the major causes of human death. There are many types of cancer treatment including surgery, chemotherapy, radiotherapy, and photothermal therapy. Combining different therapies can synergistically enhance the therapeutic effect. We developed porous hollow palladium nanoparticles (PHPdNPs) to co-deliver 131I (a radioisotope that is commonly used in radiotherapy) and doxorubicin (DOX; a chemotherapy drug). Compared with other mesoporous nanocarriers, our PHPdNPs exhibited impressive photothermal conversion efficiency and stability. Drug loading is high and drug release is controllable by repeated laser irradiation and acidic pH in tumor microenvironments. Owing to the specific interaction between palladium and iodine, the PHPdNPs serve as effective 131I delivery vehicles with excellent radiochemical stability. A single dose of [131I]PHPdNPs-DOX has superior antitumor efficacy because it enables a combination of chemo-, photothermal-, and radio-therapy. Moreover, the nanocomplex has no obvious side-effects in mice. Therefore, we believe that PHPdNPs are excellent candidates for multimodal imaging-guided therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart, B. W.; Kleihues, P. World Cancer Report 2003; World Health Organization Press: Geneva, 2003.

    Google Scholar 

  2. Florea, A. M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers 2011, 3, 1351–1371.

    Article  Google Scholar 

  3. Tsuruo, T.; Naito, M.; Tomida, A.; Fujita, N.; Mashima, T.; Sakamoto, H.; Haga, N. Molecular targeting therapy of cancer: Drug resistance, apoptosis and survival signal. Cancer Sci. 2003, 94, 15–21.

    Article  Google Scholar 

  4. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.

    Article  Google Scholar 

  5. Guo, R.; Zhang, L. Y.; Qian, H. Q.; Li, R. T.; Jiang, X. Q.; Liu, B. R. Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir 2010, 26, 5428–5434.

    Article  Google Scholar 

  6. Li, L.; ten Hagen, T. L. M.; Bolkestein, M.; Gasselhuber, A.; Yatvin, J.; van Rhoon, G. C.; Eggermont, A. M. M.; Haemmerich, D.; Koning, G. A. Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia. J. Control. Release 2013, 167, 130–137.

    Article  Google Scholar 

  7. Corsini, M. M.; Miller, R. C.; Haddock, M. G.; Donohue, J. H.; Farnell, M. B.; Nagorney, D. M.; Jatoi, A.; McWilliams, R. R.; Kim, G. P.; Bhatia, S. et al. Adjuvant radiotherapy and chemotherapy for pancreatic carcinoma: The Mayo Clinic experience (1975–2005). J. Clin. Oncol. 2008, 26, 3511–3516.

    Article  Google Scholar 

  8. Bartelink, H.; Roelofsen, F.; Eschwege, F.; Rougier, P.; Bosset, J. F.; Gonzalez, D. G.; Peiffert, D.; van Glabbeke, M.; Pierart, M. Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: Results of a phase III randomized trial of the European Organization for Research and Treatment of Cancer Radiotherapy and Gastrointestinal Cooperative Groups. J. Clin. Oncol. 1997, 15, 2040–2049.

    Article  Google Scholar 

  9. Zhang, W.; Guo, Z. Y.; Huang, D. Q.; Liu, Z. M.; Guo, X.; Zhong, H. Q. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011, 32, 8555–8561.

    Article  Google Scholar 

  10. Chen, L.; Zhong, X. Y.; Yi, X.; Huang, M.; Ning, P.; Liu, T.; Ge, C. C.; Chai, Z. F.; Liu, Z.; Yang, K. Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials 2015, 66, 21–28.

    Article  Google Scholar 

  11. Guo, L. R.; Yan, D. D.; Yang, D. F.; Li, Y. J.; Wang, X. D.; Zalewski, O.; Yan, B. F.; Lu, W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano 2014, 8, 5670–5681.

    Article  Google Scholar 

  12. Meng, Z. Q.; Wei, F.; Ma, W. J.; Yu, N.; Wei, P. L.; Wang, Z. J.; Tang, Y. Q.; Chen, Z. G.; Wang, H. P.; Zhu, M. F. Design and Synthesis of “all-in-one” multifunctional FeS2 nanoparticles for magnetic resonance and near-infrared imaging guided photothermal therapy of tumors. Adv. Funct. Mater. 2016, 26, 8231–8242.

    Article  Google Scholar 

  13. Song, G. S.; Chao, Y.; Chen, Y. Y.; Liang, C.; Yi, X.; Yang, G. B.; Yang, K.; Cheng, L.; Zhang, Q.; Liu, Z. All-in-one theranostic nanoplatform based on hollow TaOx for chelator-free labeling imaging, drug delivery, and synergistically enhanced radiotherapy. Adv. Funct. Mater. 2016, 26, 8243–8254.

    Article  Google Scholar 

  14. Liu, T.; Shi, S. X.; Liang, C.; Shen, S. D.; Cheng, L.; Wang, C.; Song, X. J.; Goel, S.; Barnhart, T. E.; Cai, W. B. et al. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 2015, 9, 950–960.

    Article  Google Scholar 

  15. [Huang, X. H.; El-Sayed, M. A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28.

    Article  Google Scholar 

  16. Wang, S. H.; Riedinger, A.; Li, H. B.; Fu, C. H.; Liu, H. Y.; Li, L. L.; Liu, T. L.; Tan, L. F.; Barthel, M. J.; Pugliese, G. et al. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano 2015, 9, 1788–1800.

    Article  Google Scholar 

  17. Yang, K.; Zhang, S.; Zhang, G.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

    Article  Google Scholar 

  18. Yi, X.; Yang, K.; Liang, C.; Zhong, X. Y.; Ning, P.; Song, G. S.; Wang, D. L.; Ge, C. C.; Chen, C. Y.; Chai, Z. F. et al. Imaging-guided combined photothermal and radiotherapy to treat subcutaneous and metastatic tumors using iodine-131-doped copper sulfide nanoparticles. Adv. Funct. Mater. 2015, 25, 4689–4699.

    Article  Google Scholar 

  19. Zhou, M.; Zhao, J.; Tian, M.; Song, S.; Zhang, R.; Gupta, S.; Tan, D.; Shen, H.; Ferrari, M.; Li, C. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model. Nanoscale 2015, 7, 19438–19447.

    Article  Google Scholar 

  20. You, J.; Zhang, R.; Zhang, G. D.; Zhong, M.; Liu, Y.; Van Pelt, C. S.; Liang, D.; Wei, W.; Sood, A. K.; Li, C. Photothermal- chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J. Control. Release 2012, 158, 319–328.

    Article  Google Scholar 

  21. Wang, X. Y.; Zhang, J. S.; Wang, Y. T.; Wang, C. P.; Xiao, J. R.; Zhang, Q.; Cheng, Y. Y. Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials 2016, 81, 114–124.

    Article  Google Scholar 

  22. Yang, G. B.; Gong, H.; Liu, T.; Sun, X. Q.; Cheng, L.; Liu, Z. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 2015, 60, 62–71.

    Article  Google Scholar 

  23. Liu, J. J.; Wang, C.; Wang, X. J.; Wang, X.; Cheng, L.; Li, Y. G.; Liu, Z. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv. Funct. Mater. 2015, 25, 384–392.

    Article  Google Scholar 

  24. Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935–939.

    Article  Google Scholar 

  25. Sashikata, K.; Matsui, Y.; Itaya, K.; Soria, M. P. Adsorbed- iodine-catalyzed dissolution of Pd single-crystal electrodes: Studies by electrochemical scanning tunneling microscopy. J. Phys. Chem. 1996, 100, 20027–20034.

    Article  Google Scholar 

  26. Rodriguez, J. F.; Mebrahtu, T.; Soriaga, M. P. The interaction of I2(g), HI(g) and KI(aq) with Pd (111) electrode surfaces. J. Electroanal. Chem. 1989, 264, 291–296.

    Article  Google Scholar 

  27. Guo, S. J.; Dong, S. J.; Wang, E. K. A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology. Chem.—Eur. J. 2008, 14, 4689–4695.

    Article  Google Scholar 

  28. Song, X. R.; Wang, X. Y.; Yu, S. X.; Cao, J. B.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Y. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv. Mater. 2015, 27, 3285–3291.

    Article  Google Scholar 

  29. Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641.

    Article  Google Scholar 

  30. Sutter, E.; Jungjohann, K.; Bliznakov, S.; Courty, A.; Maisonhaute, E.; Tenney, S.; Sutter, P. In situ liquid-cell electron microscopy of silver–palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun. 2014, 5, 4946.

    Article  Google Scholar 

  31. Jang, H. J.; Min, D. H. Spherically-clustered porous Au–Ag alloy nanoparticle prepared by partial inhibition of galvanic replacement and its application for efficient multimodal therapy. ACS Nano 2015, 9, 2696–2703.

    Article  Google Scholar 

  32. Prevo, B. G.; Esakoff, S. A.; Mikhailovsky, A.; Zasadzinski, J. A. scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small 2008, 4, 1183–1195.

    Article  Google Scholar 

  33. You, J.; Zhang, G. D.; Li, C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 2010, 4, 1033–1041.

    Article  Google Scholar 

  34. Rapoport, N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 2007, 32, 962–990.

    Article  Google Scholar 

  35. Nair, C. K. K.; Parida, D. K.; Nomura, T. Radioprotectors in radiotherapy. J. Radiat. Res. 2001, 42, 21–37.

    Article  Google Scholar 

  36. Schlumberger, M.; De Vathaire, F.; Ceccarelli, C.; Delisle, M. J.; Francese, C.; Couette, J. E.; Pinchera, A.; Parmentier, C. Exposure to radioactive iodine-131 for scintigraphy or therapy does not preclude pregnancy in thyroid cancer patients. J. Nucl. Med. 1996, 37, 606–612.

    Google Scholar 

  37. Yang, K.; Wan, J. M.; Zhang, S.; Zhang, Y. J.; Lee, S. T.; Liu, Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 2011, 5, 516–522.

    Article  Google Scholar 

  38. Schaffland, A. O.; Buchegger, F.; Kosinski, M.; Antonescu, C.; Paschoud, C.; Grannavel, C.; Pellikka, R.; Delaloye, A. B. 131I-rituximab: Relationship between immunoreactivity and specific activity. J. Nucl. Med. 2004, 45, 1784–1790.

    Google Scholar 

  39. Tian, L. L.; Chen, Q.; Yi, X.; Wang, G. L.; Chen, J.; Ning, P.; Yang, K.; Liu, Z. Radionuclide I-131 labeled albumin-paclitaxel nanoparticles for synergistic combined chemo-radioisotope therapy of cancer. Theranostics 2017, 7, 614–623.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Key Research and Development Program of China (No. 2016YFA0203600), National Natural Science Foundation of China (Nos. 81571743, 51502251, and 81571707), Fundamental Research Funds for Xiamen University (No. 20720160067) and Natural Science Foundation of Fujian Province (Nos. 2015J01519 and 2014Y2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolian Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Liu, N., He, L. et al. Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy. Nano Res. 11, 2796–2808 (2018). https://doi.org/10.1007/s12274-017-1910-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1910-y

Keywords

Navigation