Skip to main content
Log in

Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-Se batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, we developed a polyaniline (PANI)-coated selenium/carbon nanocomposite encapsulated in graphene sheets (PANI@Se/C-G), with excellent performance in Li-Se batteries. The PANI@Se/C-G nanostructure presents attractive properties as cathode of Li-Se batteries, with a high specific capacity of 588.7 mAh·g–1 at a 0.2C (1C = 675 mA·g−1) rate after 200 cycles. Even at a high rate of 2C, a high capacity of 528.6 mAh·g–1 is obtained after 500 cycles. The excellent cycle stability and rate performance of the PANI@Se/C-G composite can be attributed to the synergistic combination of carbon black (as the conductive matrix for Se) and the double conductive layer comprising the uniform PANI shell and the graphene sheets, which effectively improves the utilization of selenium and significantly enhances the electronic conductivity of the whole electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, J. T.; Ma, J. M.; Fan, Q. H.; Guo, S. J.; Dou, S. X. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X= O2, S, Se, Te, I2, Br2) batteries. Adv. Mater. 2017, 29, 1606454.

    Article  Google Scholar 

  2. Rehman, S.; Guo, S. J.; Hou, Y. L. Rational design of Si/SiO2@ hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery. Adv. Mater. 2016, 28, 3167–3172.

    Article  Google Scholar 

  3. Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

    Article  Google Scholar 

  4. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, DOI: 10.1002/aenm.201700260.

    Google Scholar 

  5. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

    Article  Google Scholar 

  6. Chen, L.; Shaw, L. L. Recent advances in lithium-sulfur batteries. J. Power Sources 2014, 267, 770–783.

    Article  Google Scholar 

  7. He, J. R.; Chen, Y. F.; Lv, W. Q.; Wen, K. C.; Xu, C.; Zhang, W. L.; Li, Y. R.; Qin, W.; He, W. D. From metalorganic framework to Li2S@C–Co–N nanoporous architecture: A high-capacity cathode for lithium-sulfur batteries. ACS Nano 2016, 10, 10981–10987.

    Article  Google Scholar 

  8. He, J. R.; Chen, Y. F.; Li, P. J.; Fu, F.; Wang, Z. G.; Zhang, W. L. Three-dimensional CNT/graphene-sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 18605–18610.

    Article  Google Scholar 

  9. He, J. R.; Luo, L.; Chen, Y. F.; Manthiram, A. Yolk-Shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for highperformance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1702707.

    Article  Google Scholar 

  10. Abouimarane, A.; Dambourne, D.; Chapman, W.; Chupas, J.; Weng, W.; Amine, K. A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. J. Am. Chem. Soc. 2012, 134, 4505–4508.

    Article  Google Scholar 

  11. Yang, C. P.; Yin, Y. X.; Guo, Y. G. Elemental selenium for electrochemical energy storage. J. Phys. Chem. Lett. 2015, 6, 256–266.

    Article  Google Scholar 

  12. Yang, C. P.; Xin, S.; Yin, Y. X.; Ye, H.; Zhang, J.; Guo, Y. G. An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries. Angew. Chem., Int. Ed. 2013, 52, 8363–8367.

    Article  Google Scholar 

  13. Luo, C.; Xu, Y. H.; Zhu, Y. J.; Liu, Y. H.; Zheng, S. Y.; Liu, Y.; Langrock, A.; Wang, C. S. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 2013, 7, 8003–8010.

    Article  Google Scholar 

  14. He, J. R.; Chen, Y. F.; Lv, W. Q.; Wen, K. C.; Li, P. J.; Wang, Z. G.; Zhang, W. L.; Qin, W.; He, W. D. Threedimensional hierarchical graphene-CNT@Se: A highly efficient freestanding cathode for Li-Se batteries. ACS Energy Lett. 2016, 1, 16–20.

    Article  Google Scholar 

  15. He, J. R.; Lv, W. Q.; Chen, Y. F.; Xiong, J.; Wen, K. C.; Xu, C.; Zhang, W. L.; Li, Y. R.; Qin, W.; He, W. D. Threedimensional hierarchical C-Co-N/Se derived from metalorganic framework as superior cathode for Li-Se batteries. J. Power Sources 2017, 363, 103–109.

    Article  Google Scholar 

  16. Zhang, J. J.; Fan, L.; Zhu, Y. C.; Xu, Y. H.; Liang, J. W.; Wei, D. H.; Qian, Y. T. Selenium/interconnected porous hollow carbon bubbles composites as the cathodes of Li-Se batteries with high performance. Nanoscale 2014, 6, 12952–12957.

    Article  Google Scholar 

  17. Liu, Y. X.; Si, L.; Zhou, X. S.; Liu, X.; Xu, Y.; Bao, J. C.; Dai, Z. H. A selenium-confined microporous carbon cathode for ultrastable lithium-selenium batteries. J. Mater. Chem. A 2014, 2, 17735–17739.

    Article  Google Scholar 

  18. Liu, T.; Jia, M.; Zhang, Y.; Han, J.; Li, Y.; Bao, S. J.; Liu, D. Y.; Jiang, J.; Xu, M. W. Confined selenium within metal-organic frameworks derived porous carbon microcubes as cathode for rechargeable lithium-selenium batteries. J. Power Sources 2017, 341, 53–59.

    Article  Google Scholar 

  19. Ye, H.; Yin, Y. X.; Zhang, S. F.; Guo, Y. G. Advanced Se-C nanocomposites: A bifunctional electrode material for both Li-Se and Li-ion batteries. J. Mater. Chem. A. 2014, 2, 13293–13298.

    Article  Google Scholar 

  20. He, J. R.; Lv, W. Q.; Chen, Y. F.; Wen, K. C.; Xu, C.; Zhang, W. L.; Li, Y. R.; Qin, W.; He, W. D. Tellurium-impregnated porous cobalt-doped carbon polyhedra as superior cathode for lithium-tellurium batteries. ACS Nano 2017, 11, 8144–8152.

    Article  Google Scholar 

  21. Kundu, D.; Krumeich, F.; Nesper, R. Investigation of nanofibrous selenium and its polypyrrole and graphene composite as cathode material for rechargeable Li-batteries. J. Power Sources 2013, 236, 112–117.

    Article  Google Scholar 

  22. Guo, J.; Wen, Z. Y.; Ma, G. Q.; Jin, J.; Wang, W. Q.; Liu, Y. A selenium@polypyrrole hollow sphere cathode for rechargeable lithium batteries. RSC Advances, 2015, 5, 20346–20350.

    Article  Google Scholar 

  23. Zhang, J. J.; Xu, Y. H.; Fan, L.; Zhu, Y. C.; Liang, J. W.; Qian, Y. Graphene-encapsulated selenium/polyaniline core-shell nanowires with enhanced electrochemical performance for Li-Se batteries. Nano Energy 2015, 13, 592–600.

    Article  Google Scholar 

  24. Fan, S.; Zhang, Y.; Li, S. H.; Lan, T. Y; Xu, J. L. Hollow selenium encapsulated into 3D graphene hydrogels for lithium-selenium batteries with high rate performance and cycling stability. RSC Adv. 2017, 7, 21281–21286.

    Article  Google Scholar 

  25. Peng, X.; Wang, L.; Zhang, X. M.; Gao, B.; Fu, J. J.; Xiao, S.; Huo, K. F.; Chu, P. K. Reduced graphene oxide encapsulated selenium nanoparticles for high-power lithium-selenium battery cathode. J. Power Sources 2015, 288, 214–220.

    Article  Google Scholar 

  26. Zhao, X. H.; Ahn, H. J.; Kim, K. W.; Cho, K. K.; Ahn, J. H. Polyaniline-coated mesoporous carbon/sulfur composites for advanced lithium sulfur batteries. J. Phys. Chem. C 2015, 119, 7996–8003.

    Article  Google Scholar 

  27. Sun, Z. J.; Xiao, M.; Wang, S. J.; Han, D. M.; Song, S. Q.; Chen, G. H.; Meng, Y. Z. Specially designed carbon black nanoparticle-sulfur composite cathode materials with a novel structure for lithium-sulfur battery application. J. Power Sources 2015, 285, 478–484.

    Article  Google Scholar 

  28. Li, G. C.; Li, G. R.; Ye, S. H.; Gao, X. P. A polyanilinecoated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2012, 2, 1238–1245.

    Article  Google Scholar 

  29. He, J. R.; Chen, Y. F.; Lv, W. Q.; Wen, K. C.; Wang, Z. G.; Zhang, W. L.; Li, Y. R.; Qin, W.; He, W. D. Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: A high-performance freestanding cathode for Li-Te batteries. ACS Nano 2016, 10, 8837–8842.

    Article  Google Scholar 

  30. Zhang, J. J.; Liang, J. W.; Zhu, Y. C.; Wei, D. H.; Fan, L.; Qian, Y. T. Synthesis of Co2SnO4 hollow cubes encapsulated in graphene as high capacity anode materials for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 2728–2734.

    Article  Google Scholar 

  31. Zhou, S. P.; Zhang, H. M.; Zhao, Q.; Wang, X. H.; Li, J.; Wang, F. S. Graphene-wrapped polyaniline nanofibers as electrode materials for organic supercapacitors. Carbon 2013, 52, 440–450.

    Article  Google Scholar 

  32. Sun, Y.; Wang, S. P.; Cheng, H.; Dai, Y.; Yu, J. X.; Wu, J. P. Synthesis of a ternary polyaniline@acetylene black-sulfur material by continuous two-step liquid phase for lithium sulfur batteries. Electrochim. Acta 2015, 158, 143–151.

    Article  Google Scholar 

  33. Yang, L. C.; Wang, S. N.; Mao, J. J.; Deng, J. W.; Gao, Q. S.; Tang, Y.; Schmidt, O. G. Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 2013, 25, 1180–1184.

    Article  Google Scholar 

  34. Quillard, S.; Louarn, G.; Lefrant, S.; Macdiarmid, A. G. Vibrational analysis of polyaniline: A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys. Rev. B 1994, 50, 12496–12508.

    Article  Google Scholar 

  35. Li, L.; Qin, Z. Y.; Liang, X.; Fan, Q. Q.; Lu, Y. Q.; Wu, W. H.; Zhu, M. F. Facile fabrication of uniform core-shell structured carbon nanotube-polyaniline nanocomposites. J. Phys. Chem. C 2009, 113, 5502–5507.

    Article  Google Scholar 

  36. Liu, Y.; Zhang, J.; Liu, X. C.; Guo, J. X.; Pan, L. F.; Wang, H. F.; Su, Q. M.; Du, G. H. Nanosulfur/polyaniline/graphene composites for high-performance lithium-sulfur batteries: One pot in-situ synthesis. Mater. Lett. 2014, 133, 193–196.

    Article  Google Scholar 

  37. Zou, B. X.; Liang, Y.; Liu, X. X.; Diamond, D.; Lau, K. T. Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite. J. Power Sources 2011, 196, 4842–4848.

    Article  Google Scholar 

  38. Zhang, K. L.; Xu, Y. H.; Lu, Y.; Zhu, Y. C.; Qian, Y. Y.; Wang, D. F.; Zhou, J. B.; Lin, N.; Qian, Y. T. A graphene oxide-wrapped bipyramidal sulfur@polyaniline core-shell structure as a cathode for Li-S batteries with enhanced electrochemical performance. J. Mater. Chem. A 2016, 4, 6404–6410.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the financial support from the Natural Sciences Fund of Zhejiang Province (No. LQ17B010003) and the National Natural Science Foundation of China (NSFC) (No. 11604319).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingjing Zhang or Zhigang Xia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhang, J., Xia, Z. et al. Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-Se batteries. Nano Res. 11, 2460–2469 (2018). https://doi.org/10.1007/s12274-017-1870-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1870-2

Keywords

Navigation