Skip to main content
Log in

Polyethylene glycol-modified cobalt sulfide nanosheets for high-performance photothermal conversion and photoacoustic/magnetic resonance imaging

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Theranostic nanoagents that integrate the diagnoses and therapies within a single nanomaterial are compelling in their use for highly precise and efficient antitumor treatments. Herein, polyethylene glycol (PEG)-modified cobalt sulfide nanosheets (CoS-PEG NSs) are synthesized and unitized as a powerful theranostic nanoagent for efficient photothermal conversion and multimodal imaging for the first time. We demonstrate that the obtained CoS-PEG NSs show excellent compatibility and stability in water and various physiological solutions, and can be effectively internalized by cells, but exhibit a low cytotoxicity. The CoS-PEG NSs exhibit an efficient photothermal conversion capacity, benefited from the strong near-infrared (NIR) absorption, high photothermal conversion efficiency (∼33.0%), and excellent photothermal stability. Importantly, the highly effective photothermal killing effect on cancer cells after exposure to CoS-PEG NSs plus laser irradiation has been confirmed by both the standard Cell Counting Kit-8 and live-dead cell staining assays, revealing a concentration-dependent photothermal therapeutic effect. Moreover, utilizing the strong NIR absorbance together with the T2-MR contrast ability of the CoS-PEG NSs, a high-contrast triple-modal imaging, i.e., photoacoustic (PA), infrared thermal (IRT), and magnetic resonance (MR) imaging, can be achieved, suggesting a great potential for multimodal imaging to provide comprehensive cancer diagnosis. Our work introduces the first bioapplication of the CoS-PEG nanomaterial as a potential theranostic nanoplatform and may promote further rational design of CoS-based nanostructures for precise/efficient cancer diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ou, G.; Li, Z. W.; Li, D. K.; Cheng, L.; Liu, Z.; Wu, H. Photothermal therapy by using titanium oxide nanoparticles. Nano Res. 2016, 9, 1236–1243.

    Article  Google Scholar 

  2. Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA-Cancer J. Clin. 2013, 63, 11–30.

    Article  Google Scholar 

  3. Zhu, C. Q.; Yang, Y. H.; Luo, M.; Yang, C. X.; Wu, J. J.; Chen, L. N.; Liu, G.; Wen, T. B.; Zhu, J.; Xia, H. P. Stabilizing two classical antiaromatic frameworks: Demonstration of photoacoustic imaging and the photothermal effect in metalla-aromatics. Angew. Chem., Int. Ed. 2015, 127, 6279–6283.

    Article  Google Scholar 

  4. Yang, K.; Hu, L. L.; Ma, X. X.; Ye, S. Q.; Cheng, L.; Shi, X. Z.; Li, C. H.; Li, Y. G.; Liu, Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater. 2012, 24, 1868–1872.

    Article  Google Scholar 

  5. Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.

    Article  Google Scholar 

  6. Zhao, Z. X.; Shi, S. G.; Huang, Y. H.; Tang, S. H.; Chen, X. L. Simultaneous photodynamic and photothermal therapy using photosensitizer-functionalized Pd nanosheets by single continuous wave laser. ACS Appl. Mater. Interfaces 2014, 6, 8878–8885.

    Article  Google Scholar 

  7. Zhang, Z. J.; Wang, L. M.; Wang, J.; Jiang, X. M.; Li, X. H.; Hu, Z. J.; Ji, Y. L.; Wu, X. C.; Chen, C. Y. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 2012, 24, 1418–1423.

    Article  Google Scholar 

  8. Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

    Article  Google Scholar 

  9. Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

    Article  Google Scholar 

  10. Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893.

    Article  Google Scholar 

  11. Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem., Int. Ed. 2013, 125, 4254–4258.

    Article  Google Scholar 

  12. Li, Z. L.; Liu, J.; Hu, Y.; Howard, K. A.; Li, Z.; Fan, X. L.; Chang, M. L.; Sun, Y.; Besenbacher, F.; Chen, C. Y. et al. Multimodal imaging-guided antitumor photothermal therapy and drug delivery using bismuth selenide spherical sponge. ACS Nano 2016, 10, 9646–9658.

    Article  Google Scholar 

  13. Li, Z. L.; Hu, Y.; Chang, M. L.; Howard, K. A.; Fan, X. L.; Sun, Y.; Besenbacher, F.; Yu, M. Highly porous PEGylated Bi2S3 nano-urchins as a versatile platform for in vivo triplemodal imaging, photothermal therapy and drug delivery. Nanoscale 2016, 8, 16005–16016.

    Article  Google Scholar 

  14. Li, Z. L.; Hu, Y.; Howard, K. A.; Jiang, T. T.; Fan, X. L.; Miao, Z. H.; Sun, Y.; Besenbacher, F.; Yu, M. Multifunctional bismuth selenide nanocomposites for antitumor thermochemotherapy and imaging. ACS Nano 2016, 10, 984–997.

    Article  Google Scholar 

  15. Zhang, C.; Fu, Y. Y.; Zhang, X. J.; Yu, C. S.; Zhao, Y.; Sun, S. K. BSA-directed synthesis of CuS nanoparticles as a biocompatible photothermal agent for tumor ablation in vivo. Dalton T. 2015, 44, 13112–13118.

    Article  Google Scholar 

  16. Yang, T.; Wang, Y.; Ke, H. T.; Wang, Q. L.; Lv, X. Y.; Wu, H.; Tang, Y. A.; Yang, X. L.; Chen, C. Y.; Zhao, Y. L. et al. Protein-nanoreactor-assisted synthesis of semiconductor nanocrystals for efficient cancer theranostics. Adv. Mater. 2016, 28, 5923–5930.

    Article  Google Scholar 

  17. Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.

    Article  Google Scholar 

  18. Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J. L.; Chan, W. C.; Cao, W. G.; Wang, L. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324–332.

    Article  Google Scholar 

  19. Janib, S. M.; Moses, A. S.; MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliver. Rev. 2010, 62, 1052–1063.

    Article  Google Scholar 

  20. Yang, K.; Yang, G. B.; Chen, L.; Cheng, L.; Wang, L.; Ge, C. C.; Liu, Z. FeS nanoplates as a multifunctional nano-theranostic for magnetic resonance imaging guided photothermal therapy. Biomaterials 2015, 38, 1–9.

    Article  Google Scholar 

  21. Zhang, Z. J.; Wang, J.; Chen, C. Y. Near-infrared lightmediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater. 2013, 25, 3869–3880.

    Article  Google Scholar 

  22. Wang, L. R.; Zhu, X. L.; Tang, X. Y.; Wu, C. Q.; Zhou, Z. J.; Sun, C. J.; Deng, S. L.; Ai, H.; Gao, J. H. A multiple gadolinium complex decorated fullerene as a highly sensitive T1 contrast agent. Chem. Commun. 2015, 51, 4390–4393.

    Article  Google Scholar 

  23. Rieke, V.; Butts Pauly, K. MR thermometry. J. Magn. Reson. Imaging 2008, 27, 376–390.

    Article  Google Scholar 

  24. Tian, Q. W.; Hu, J. Q.; Zhu, Y. H.; Zou, R. J.; Chen, Z. G.; Yang, S. P.; Li, R. W.; Su, Q. Q.; Han, Y.; Liu, X. G. Sub-10 nm Fe3O4@Cu2−xS core-shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc. 2013, 135, 8571–8577.

    Article  Google Scholar 

  25. Fu, G. L.; Liu, W.; Li, Y. Y.; Jin, Y. S.; Jiang, L. D.; Liang, X. L.; Feng, S. S.; Dai, Z. F. Magnetic prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance. Bioconjugate Chem. 2014, 25, 1655–1663.

    Article  Google Scholar 

  26. Song, G. S.; Liang, C.; Gong, H.; Li, M. F.; Zheng, X. C.; Cheng, L.; Yang, K.; Jiang, X. Q.; Liu, Z. Core-shell MnSe@Bi2Se3 fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Adv. Mater. 2015, 27, 6110–6117.

    Article  Google Scholar 

  27. Song, X. R.; Wang, X. Y.; Yu, S. X.; Cao, J. B.; Li, S. H.; Li, J.; Liu, G.; Yang, H. H.; Chen, X. Y. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv. Mater. 2015, 27, 3285–3291.

    Article  Google Scholar 

  28. Xie, J.; Lee, S.; Chen, X. Y. Nanoparticle-based theranostic agents. Adv. Drug Deliver. Rev. 2010, 62, 1064–1079.

    Article  Google Scholar 

  29. Menon, J. U.; Jadeja, P.; Tambe, P.; Vu, K.; Yuan, B. H.; Nguyen, K. T. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics 2013, 3, 152–166.

    Article  Google Scholar 

  30. Parkes, L. M.; Hodgson, R.; Lu, L. T.; Tung, L. D.; Robinson, I.; Fernig, D. G.; Thanh, N. T. K. Cobalt nanoparticles as a novel magnetic resonance contrast agentrelaxivities at 1.5 and 3 Tesla. Contrast Media Mol. I. 2008, 3, 150–156.

    Article  Google Scholar 

  31. Li, B.; Yuan, F. K.; He, G. J.; Han, X. Y.; Wang, X.; Qin, J. B.; Guo, Z. X.; Lu, X. W.; Wang, Q.; Parkin, I. P. et al. Ultrasmall CuCo2S4 nanocrystals: All-in-one theragnosis nanoplatform with magnetic resonance/near-infrared imaging for efficiently photothermal therapy of tumors. Adv. Funct. Mater. 2017, 27, 1606218.

    Article  Google Scholar 

  32. Huang, X. J.; Deng, G. Y.; Liao, L. J.; Zhang, W. L.; Guan, G. Q.; Zhou, F.; Xiao, Z. Y.; Zou, R. J.; Wang, Q.; Hu, J. Q. CuCo2S4 nanocrystals: A new platform for multimodal imaging guided photothermal therapy. Nanoscale 2017, 9, 2626–2632.

    Article  Google Scholar 

  33. Yang, Z. S.; Chen, C. Y.; Chang, H. T. Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets. J. Power Sources 2011, 196, 7874–7877.

    Article  Google Scholar 

  34. Sun, L.; Lin, Z.; Peng, J.; Weng, J.; Huang, Y.; Luo, Z. Preparation of few-layer bismuth selenide by liquid-phaseexfoliation and its optical absorption properties. Sci. Rep. 2014, 4, 4794.

    Article  Google Scholar 

  35. Li, Z. L.; Zeng, Y. Y.; Zhang, D.; Wu, M.; Wu, L. J.; Huang, A. M.; Yang, H. H.; Liu, X. L.; Liu, J. F. Glypican-3 antibody functionalized prussian blue nanoparticles for targeted MR imaging and photothermal therapy of hepatocellular carcinoma. J. Mater. Chem. B 2014, 2, 3686–3696.

    Article  Google Scholar 

  36. Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641.

    Article  Google Scholar 

  37. Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011, 11, 2560–2566.

    Article  Google Scholar 

  38. Wang, L. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462.

    Article  Google Scholar 

  39. Chen, J. Q.; Liu, C. B.; Hu, D. H.; Wang, F.; Wu, H. W.; Gong, X. J.; Liu, X.; Song, L.; Sheng, Z. H.; Zheng, H. R. Single-layer MoS2 nanosheets with amplified photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors. Adv. Funct. Mater. 2016, 26, 8715–8725.

    Article  Google Scholar 

  40. Wang, X. G.; Dong, Z. Y.; Cheng, H.; Wan, S. S.; Chen, W. H.; Zou, M. Z.; Huo, J. W.; Deng, H. X.; Zhang, X. Z. A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale 2015, 7, 16061–16070.

    Article  Google Scholar 

  41. Zhang, X. D.; Chen, J.; Min, Y.; Park, G. B.; Shen, X.; Song, S. S.; Sun, Y. M.; Wang, H.; Long, W.; Xie, J. P. et al. Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Adv. Funct. Mater. 2014, 24, 1718–1729.

    Article  Google Scholar 

  42. Zhang, X. D.; Luo, Z. T.; Chen, J.; Shen, X.; Song, S. S.; Sun, Y. M.; Fan, S. J.; Fan, F. Y.; Leong, D. T.; Xie, J. P. Ultrasmall Au10–12(SG)10–12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv. Mater. 2014, 26, 4565–4568.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 21473045 and 51401066), the Fundamental Research Funds from the Central University (PIRSOF HIT A201503), and the State Key Laboratory of Urban Water Resource and Environment, the Harbin Institute of Technology (No. 2018DX04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ye Sun, Flemming Besenbacher or Miao Yu.

Electronic supplementary material

12274_2017_1865_MOESM1_ESM.pdf

Polyethylene glycol-modified cobalt sulfide nanosheets for high-performance photothermal conversion and photoacoustic/magnetic resonance imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, Z., Chen, L. et al. Polyethylene glycol-modified cobalt sulfide nanosheets for high-performance photothermal conversion and photoacoustic/magnetic resonance imaging. Nano Res. 11, 2436–2449 (2018). https://doi.org/10.1007/s12274-017-1865-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1865-z

Keywords

Navigation