Skip to main content
Log in

Single Cr atom catalytic growth of graphene

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single atoms are the ultimate minimum size limit for catalysts. Graphene, as an exciting, ultimately thin (one atom thick) material can be imaged in a transmission electron microscope with relatively few imaging artefacts. Here, we directly observe the behavior of single Cr atoms in graphene mono- and di-vacancies and, more importantly, at graphene edges. Similar studies at graphene edges with other elemental atoms, with the exception of Fe, show catalytic etching of graphene. Fe atoms have been shown to both etch and grow graphene. In contrast, Cr atoms are only observed to induce graphene growth. Complementary theoretical calculations illuminate the differences between Fe and Cr, and confirm single Cr atoms as superior catalysts for sp2 carbon growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rümmeli, M. H.; Rocha, C. G.; Ortmann, F.; Ibrahim, I.; Sevincli, H.; Börrnert, F.; Kunstmann, J.; Bachmatiuk, A.; Pötsche, M.; Shiraishi, M. et al. Graphene: Piecing it together. Adv. Mater. 2011, 23, 4471–4490.

    Article  Google Scholar 

  2. Al-Dulaimi, N.; Lewis, E. A.; Lewis, D. J.; Howell, S. K.; Haigh, S. J.; O’Brien, P. Sequential bottom-up and top-down processing for the synthesis of transition metal dichalcogenide nanosheets: The case of rhenium disulfide (ReS2). Chem. Commun. 2016, 52, 7878–7881.

    Article  Google Scholar 

  3. Zhao, J.; Deng, Q.; Avdoshenko, S. M.; Fu, L.; Eckert, J.; Rümmeli, M. H. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. Proc. Natl. Acad. Sci. USA 2014, 111, 15641–15646.

    Article  Google Scholar 

  4. Qiao, B.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  Google Scholar 

  5. Sun, S. H.; Zhang, G. X.; Gauquelin, N.; Chen, N.; Zhou, J. G.; Yang, S. L.; Chen, W. F.; Meng, X. B.; Geng, D. S.; Banis, M. N. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 2013, 3, 1775–1784.

    Article  Google Scholar 

  6. Sun, L. T.; Banhart, F.; Warner, J. Two-dimensional materials under electron irradiation. MRS Bull. 2015, 40, 29–37.

    Article  Google Scholar 

  7. Ramasse, Q. M.; Zan, R.; Bangert, U.; Boukhvalov, D. W.; Son, Y. W.; Novoselov, K. S. Direct experimental evidence of metal-mediated etching of suspended graphene. ACS Nano 2012, 6, 4063–4071.

    Article  Google Scholar 

  8. Wang, W. L.; Santos, E. J. G.; Jiang, B.; Cubuk, E. D.; Ophus, C.; Centeno, A.; Pesquera, A.; Zurutuza, A.; Ciston, J.; Westervelt, R. et al. Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene. Nano Lett. 2014, 14, 450–455.

    Article  Google Scholar 

  9. Robertson, A. W.; Montanari, B.; He, K.; Kim, J.; Allen, C. S. Wu, Y. A.; Olivier, J.; Neethling, J.; Harrison, N.; Kirkland, A. I. et al. Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 2013, 13, 1468–1475.

    Article  Google Scholar 

  10. Zhao, L.; Ta, H. Q.; Dianat, A.; Soni, A.; Fediai, A.; Yin, W. J.; Gemming, T.; Trzebicka, B.; Cuniberti, G.; Liu, Z. F. et al. In situ electron driven carbon nanopillar-fullerene transformation through Cr atom mediation. Nano Lett. 2017, 17, 4725–4732.

    Article  Google Scholar 

  11. Liu, Y. Y.; Dobrinsky, A.; Yakobson, B. I. Graphene edge from armchair to zigzag: The origins of nanotube chirality? Phys. Rev. Lett. 2010, 105, 235502.

    Article  Google Scholar 

  12. Warner, J. H.; Rümmeli, M. H.; Ge, L.; Gemming, T.; Montanari, B.; Harrison, N. M.; Büchner, B.; Briggs, G. A. D. Structural transformations in graphene studied with high spatial and temporal resolution. Nat. Nanotechnol. 2009, 4, 500–504.

    Article  Google Scholar 

  13. Hernadia, K.; Fonseca, A.; Nagya, J. B.; Bernaerts, D.; Lucas, A. A. Fe-catalyzed carbon nanotube formation. Carbon 1996, 34, 1249–1257.

    Article  Google Scholar 

  14. Rümmeli, M. H.; Schäffel, F.; Kramberger, C.; Gemming, T.; Bachmatiuk, A.; Kalenczuk, R. J.; Rellinghaus, B.; Büchner, B.; Pichler, T. Oxide-driven carbon nanotube growth in supported catalyst CVD. J. Am. Chem. Soc. 2007, 129, 15772–15773.

    Article  Google Scholar 

  15. An, H.; Lee, W. J.; Jung, J. Graphene synthesis on Fe foil using thermal CVD. Curr. Appl. Phys. 2011, 11, S81–S85.

    Article  Google Scholar 

  16. Baker, R. T. K.; Harris, P. S.; Thomas, R. B.; Waite, R. J. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 1973, 30, 86–95.

    Article  Google Scholar 

  17. Robertson, J.; Hofmann, S.; Cantoro, M.; Parvez, A.; Ducati, C.; Zhong, G.; Sharma, R.; Mattevi, C. Controlling the catalyst during carbon nanotube growth. J. Nanosci. Nanotechnol. 2008, 8, 6105–6111.

    Article  Google Scholar 

  18. Ta, H. Q.; Perello, D. J.; Duong D. L.; Han G. H.; Gorantla S.; Nguyen V. L.; Bachmatiuk, A.; Rotkin, S.V.; Lee, Y. H.; Rümmeli, M. H. Stranski−krastanov and volmer−weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 2016, 16, 6403–6410.

    Article  Google Scholar 

  19. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  20. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  21. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  22. Mills, G.; Jónsson, H.; Schenterb, G. K. Reversible work transition state theory: Application to dissociative adsorption of hydrogen. Surf. Sci. 1995, 324, 305–337.

    Article  Google Scholar 

Download references

Acknowledgements

The following are gratefully acknowledged. The National Natural Science Foundation of China (No. 51672181), the National Science Center for the financial support within the frame of the Sonata Program (No. 2014/13/D/ST5/02853) and the Opus program (No. 2015/19/B/ST5/03399). H. Q. T. thanks Soochow University for support. P. O. Å. P. wishes to acknowledge the Knut and Alice Wallenberg foundation for support of the electron microscopy laboratory in Linköping.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanjian Yin, Alicja Bachmatiuk or Mark H. Rümmeli.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ta, H.Q., Zhao, L., Yin, W. et al. Single Cr atom catalytic growth of graphene. Nano Res. 11, 2405–2411 (2018). https://doi.org/10.1007/s12274-017-1861-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1861-3

Keywords

Navigation