Skip to main content
Log in

Surface-floating gold nanorod super-aggregates with macroscopic uniformity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We present a simple method for obtaining high-density two- and threedimensional assemblies of gold nanorods (AuNRs) on polymer brush, referred to as “surface-floating super-aggregates”, with uniform distribution spanning macroscopic distances. This was achieved via the single-step immersion of a poly(oligo ethylene glycol methacrylate) brush-containing substrate in a AuNR solution without any form of functionalization. Owing to extensive macroscale plasmonic coupling, we observed for the first time the gradual evolution of a unique sharp peak in addition to the transverse and longitudinal peaks, in this case, in the near-infrared (NIR) region. We also highlight the dynamic nature of these surface-floating super-aggregates, in which the AuNRs spread out when immersed in solution and collapse when dried to facilitate the access of probe molecules for biosensing applications. As a proof of concept, the surface-floating super-aggregates were used for surface-enhanced Raman spectroscopy, with which we detected rhodamine 6G at as low as sub-femtomolar concentrations. Owing to the excellent large-area uniform coverage and extreme simplicity of the fabrication method, such AuNR assemblies can easily be mass-produced and incorporated into cheap biosensors suitable for consumer use in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.

    Article  Google Scholar 

  2. Wu, J.-L.; Chen, F.-C.; Hsiao, Y.-S.; Chien, F.-C.; Chen, P. L.; Kuo, C.-H.; Huang, M. H.; Hsu, C.-S. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 2011, 5, 959–967.

    Article  Google Scholar 

  3. Hu, M.-S.; Chen, H.-L.; Shen, C.-H.; Hong, L.-S.; Huang, B.-R.; Chen, K.-H.; Chen, L.-C. Photosensitive goldnanoparticle-embedded dielectric nanowires. Nat. Mater. 2006, 5, 102–106.

    Article  Google Scholar 

  4. Mangold, M. A.; Calame, M.; Mayor, M.; Holleitner, A. W. Resonant photoconductance of molecular junctions formed in gold nanoparticle arrays. J. Am. Chem. Soc. 2011, 133, 12185–12191.

    Article  Google Scholar 

  5. de la Rica, R.; Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 2012, 7, 821–824.

    Article  Google Scholar 

  6. Rodriguez-Lorenzo, L.; de la Rica, R.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Stevens, M. M. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat. Mater. 2012, 11, 604–607.

    Article  Google Scholar 

  7. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

    Article  Google Scholar 

  8. Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

    Article  Google Scholar 

  9. Ross, M. B.; Blaber, M. G.; Schatz, G. C. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nat. Commun. 2014, 5, 4090.

    Article  Google Scholar 

  10. Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.

    Article  Google Scholar 

  11. Agarwal, A.; Huang, S. W.; O’Donnell, M.; Day, K. C.; Day, M.; Kotov, N.; Ashkenazi, S. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 2007, 102, 064701.

    Article  Google Scholar 

  12. Niidome, T.; Akiyama, Y.; Shimoda, K.; Kawano, T.; Mori, T.; Katayama, Y.; Niidome, Y. In vivo monitoring of intravenously injected gold nanorods using near-infrared light. Small 2008, 4, 1001–1007.

    Article  Google Scholar 

  13. Eghtedari, M.; Oraevsky, A.; Copland, J. A.; Kotov, N. A.; Conjusteau, A.; Motamedi, M. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 2007, 7, 1914–1918.

    Article  Google Scholar 

  14. Shao, X.; Zhang, H. N; Rajian, J. R.; Chamberland, D. L.; Sherman, P. S.; Quesada, C. A.; Koch, A. E.; Kotov, N. A.; Wang, X. D. 125I-labeled gold nanorods for targeted imaging of inflammation. ACS Nano 2011, 5, 8967–8973.

    Article  Google Scholar 

  15. Ke, H. T.; Wang, J. R.; Dai, Z. F.; Jin, Y. S.; Qu, E. Z.; Xing, Z. W.; Guo, C. X.; Liu, J. B.; Yue, X. L. Bifunctional gold nanorod-loaded polymeric microcapsules for both contrast-enhanced ultrasound imaging and photothermal therapy. J. Mater. Chem. 2011, 21, 5561–5564.

    Article  Google Scholar 

  16. Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the nearinfrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.

    Article  Google Scholar 

  17. Kuo, W.-S.; Chang, C.-N.; Chang, Y.-T.; Yang, M.-H.; Chien, Y.-H.; Chen, S.-J.; Yeh, C.-S. Gold nanorods in photodynamic therapy, as hyperthermia agents, and in nearinfrared optical imaging. Angew. Chem., Int. Ed. 2010, 49, 2711–2715.

    Article  Google Scholar 

  18. Li, X. J.; Takashima, M.; Yuba, E.; Harada, A.; Kono, K. PEGylated PAMAM dendrimer-doxorubicin conjugatehybridized gold nanorod for combined photothermalchemotherapy. Biomaterials 2014, 35, 6576–6584.

    Article  Google Scholar 

  19. Li, X. J.; Takeda, K.; Yuba, E.; Harada, A.; Kono, K. Preparation of PEG-modified PAMAM dendrimers having a gold nanorod core and their application to photothermal therapy. J. Mater. Chem. B 2014, 2, 4167–4176.

    Article  Google Scholar 

  20. Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.

    Article  Google Scholar 

  21. Tsai, M.-F.; Chang, S.-H. G.; Cheng, F.-Y.; Shanmugam, V.; Cheng, Y.-S.; Su, C.-H.; Yeh, C.-S. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 2013, 7, 5330–5342.

    Article  Google Scholar 

  22. Batson, P. E. Plasmonic modes revealed. Science 2012, 335, 47–48.

    Article  Google Scholar 

  23. Shao, L.; Woo, K. C.; Chen, H. J.; Jin, Z.; Wang, J. F.; Lin, H.-Q. Angle- and energy-resolved plasmon coupling in gold nanorod dimers. ACS Nano 2010, 4, 3053–3062.

    Article  Google Scholar 

  24. Funston, A. M.; Novo, C.; Davis, T. J.; Mulvaney, P. Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 2009, 9, 1651–1658.

    Article  Google Scholar 

  25. Ferrier, R. C.; Lee, H.-S.; Hore, M. J. A.; Caporizzo, M.; Eckmann, D. M.; Composto, R. J. Gold nanorod linking to control plasmonic properties in solution and polymer nanocomposites. Langmuir 2014, 30, 1906–1914.

    Article  Google Scholar 

  26. Jana, N. R.; Pal, T. Anisotropic metal nanoparticles for use as surface-enhanced raman substrates. Adv. Mater. 2007, 19, 1761–1765.

    Article  Google Scholar 

  27. Adams, S. M.; Campione, S.; Caldwell, J. D.; Bezares, F. J.; Culbertson, J. C.; Capolino, F.; Ragan, R. Non-lithographic SERS substrates: Tailoring surface chemistry for Au nanoparticle cluster assembly. Small 2012, 8, 2239–2249.

    Article  Google Scholar 

  28. Murphy, C. J.; Thompson, L. B.; Alkilany, A. M.; Sisco, P. N.; Boulos, S. P.; Sivapalan, S. T.; Yang, J. A.; Chernak, D. J.; Huang, J. The many faces of gold nanorods. J. Phys. Chem. Lett. 2010, 1, 2867–2875.

    Article  Google Scholar 

  29. Vigderman, L.; Khanal, B. P.; Zubarev, E. R. Functional gold nanorods: Synthesis, self-assembly, and sensing applications. Adv. Mater. 2012, 24, 4811–4841.

    Article  Google Scholar 

  30. Hamon, C.; Bizien, T.; Artzner, F.; Even-Hernandez, P.; Marchi, V. Replacement of CTAB with peptidic ligands at the surface of gold nanorods and their self-assembling properties. J. Colloid Interface Sci. 2014, 424, 90–97.

    Article  Google Scholar 

  31. Nepal, D.; Onses, M. S.; Park, K.; Jespersen, M.; Thode, C. J.; Nealey, P. F.; Vaia, R. A. Control over position, orientation, and spacing of arrays of gold nanorods using chemically nanopatterned surfaces and tailored particle-particle-surface interactions. ACS Nano 2012, 6, 5693–5701.

    Article  Google Scholar 

  32. Lee, Y. H.; Lee, C. K.; Tan, B. R.; Rui-Tan, J. M.; Phang, I. Y.; Ling, X. Y. Using the Langmuir–Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. Nanoscale 2013, 5, 6404–6412.

    Article  Google Scholar 

  33. Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H.-L.; Cheah, K.-W.; Chen, J.-Y.; Wang, J. F. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem. 2008, 120, 9831–9836.

    Article  Google Scholar 

  34. Peng, B.; Li, G. Y.; Li, D. H.; Dodson, S.; Zhang, Q.; Zhang, J.; Lee, Y. H.; Demir, H. V.; Ling, X. Y.; Xiong, Q. H. Vertically aligned gold nanorod monolayer on arbitrary substrates: Self-assembly and femtomolar detection of food contaminants. ACS Nano 2013, 7, 5993–6000.

    Article  Google Scholar 

  35. Peng, B.; Li, Z. P.; Mutlugun, E.; Hernández-Martínez, P. L.; Li, D. H.; Zhang, Q.; Gao, Y.; Demir, H. V.; Xiong, Q. H. Quantum dots on vertically aligned gold nanorod monolayer: Plasmon enhanced fluorescence. Nanoscale 2014, 6, 5592–5598.

    Article  Google Scholar 

  36. Martín, A.; Schopf, C.; Pescaglini, A.; Wang, J. J.; Iacopino, D. Facile formation of ordered vertical arrays by droplet evaporation of Au nanorod organic solutions. Langmuir 2014, 30, 10206–10212.

    Article  Google Scholar 

  37. Ferhan, A. R.; Guo, L. H.; Kim, D.-H. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass. Langmuir 2010, 26, 12433–12442.

    Article  Google Scholar 

  38. Shao, L.; Ruan, Q. F.; Jiang, R. B.; Wang, J. F. Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics. Small 2014, 10, 802–811.

    Article  Google Scholar 

  39. Tang, W. Q.; Chase, D. B.; Rabolt, J. F. Immobilization of gold nanorods onto electrospun polycaprolactone fibers via polyelectrolyte decoration-A 3D SERS substrate. Anal. Chem. 2013, 85, 10702–10709.

    Article  Google Scholar 

  40. Qian, Y. W.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Sun, K. X.; Chen, B. Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale 2014, 6, 4781–4788.

    Article  Google Scholar 

  41. Akin, M. S.; Yilmaz, M.; Babur, E.; Ozdemir, B.; Erdogan, H.; Tamer, U.; Demirel, G. Large area uniform deposition of silver nanoparticles through bio-inspired polydopamine coating on silicon nanowire arrays for practical SERS applications. J. Mater. Chem. B 2014, 2, 4894–4900.

    Article  Google Scholar 

  42. Zhang, Q.; Lee, Y. H.; Phang, I. Y.; Lee, C. K.; Ling, X. Y. Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles. Small 2014, 10, 2703–2711.

    Article  Google Scholar 

  43. Alvarez-Puebla, R. A.; Agarwal, A.; Manna, P.; Khanal, B. P.; Aldeanueva-Potel, P.; Carbo-Argibay, E.; Pazos-Perez, N.; Vigderman, L.; Zubarev, E. R.; Kotov, N. A. et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. USA 2011, 108, 8157–8161.

    Article  Google Scholar 

  44. Stewart, A. F.; Lee, A.; Ahmed, A.; Ip, S.; Kumacheva, E.; Walker, G. C. Rational design for the controlled aggregation of gold nanorods via phospholipid encapsulation for enhanced Raman scattering. ACS Nano 2014, 8, 5462–5467.

    Article  Google Scholar 

  45. Hucknall, A.; Kim, D.-H.; Rangarajan, S.; Hill, R. T.; Reichert, W. M.; Chilkoti, A. Simple fabrication of antibody microarrays on nonfouling polymer brushes with femtomolar sensitivity for protein analytes in serum and blood. Adv. Mater. 2009, 21, 1968–1971.

    Article  Google Scholar 

  46. Ferhan, A. R.; Kim, D.-H. In-stacking: A strategy for 3D nanoparticle assembly in densely-grafted polymer brushes. J. Mater. Chem. 2012, 22, 1274–1277.

    Article  Google Scholar 

  47. Ferhan, A. R.; Guo, L. H.; Zhou, X. D.; Chen, P.; Hong, S.; Kim, D.-H. Solid-phase colorimetric sensor based on gold nanoparticle-loaded polymer brushes: Lead detection as a case study. Anal. Chem. 2013, 85, 4094–4099.

    Article  Google Scholar 

  48. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

    Article  Google Scholar 

  49. Umadevi, S.; Feng, X.; Hegmann, T. Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods. Adv. Funct. Mater. 2013, 23, 1393–1403.

    Article  Google Scholar 

  50. Kumar, J.; Thomas, R.; Swathi, R. S.; Thomas, K. G. Au nanorod quartets and Raman signal enhancement: Towards the design of plasmonic platforms. Nanoscale 2014, 6, 10454–10459.

    Article  Google Scholar 

  51. Zhou, Y. Z.; Cheng, X. N.; Du, D.; Yang, J.; Zhao, N.; Ma, S. B.; Zhong, T.; Lin, Y. H. Graphene-silver nanohybrids for ultrasensitive surface enhanced Raman spectroscopy: Size dependence of silver nanoparticles. J. Mater. Chem. C 2014, 2, 6850–6858.

    Article  Google Scholar 

  52. He, L. F.; Huang, J. N.; Xu, T. T.; Chen, L. M.; Zhang, K.; Han, S. T.; He, Y.; Lee, S. T. Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate. J. Mater. Chem. 2012, 22, 1370–1374.

    Article  Google Scholar 

  53. Gao, T.; Wang, Y. Q.; Wang, K.; Zhang, X. L.; Dui, J. N.; Li, G. M.; Lou, S. Y.; Zhou, S. M. Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate. ACS Appl. Mater. Interfaces 2013, 5, 7308–7314.

    Article  Google Scholar 

  54. Chen, J.; Gong, Y. J.; Shang, J.; Li, J. L.; Wang, Y.; Wu, K. Two-dimensional Ag nanoparticle tetramer array for surface-enhanced raman scattering measurements. J. Phys. Chem. C 2014, 118, 22702–22710

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (No. NRF-2016R1A2B4007209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hwan Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferhan, A.R., Huang, Y., Dandapat, A. et al. Surface-floating gold nanorod super-aggregates with macroscopic uniformity. Nano Res. 11, 2379–2391 (2018). https://doi.org/10.1007/s12274-017-1859-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1859-x

Keywords

Navigation