Surface-floating gold nanorod super-aggregates with macroscopic uniformity

  • Abdul R. Ferhan
  • Youju Huang
  • Anirban Dandapat
  • Dong-Hwan Kim
Research Article
  • 72 Downloads

Abstract

We present a simple method for obtaining high-density two- and threedimensional assemblies of gold nanorods (AuNRs) on polymer brush, referred to as “surface-floating super-aggregates”, with uniform distribution spanning macroscopic distances. This was achieved via the single-step immersion of a poly(oligo ethylene glycol methacrylate) brush-containing substrate in a AuNR solution without any form of functionalization. Owing to extensive macroscale plasmonic coupling, we observed for the first time the gradual evolution of a unique sharp peak in addition to the transverse and longitudinal peaks, in this case, in the near-infrared (NIR) region. We also highlight the dynamic nature of these surface-floating super-aggregates, in which the AuNRs spread out when immersed in solution and collapse when dried to facilitate the access of probe molecules for biosensing applications. As a proof of concept, the surface-floating super-aggregates were used for surface-enhanced Raman spectroscopy, with which we detected rhodamine 6G at as low as sub-femtomolar concentrations. Owing to the excellent large-area uniform coverage and extreme simplicity of the fabrication method, such AuNR assemblies can easily be mass-produced and incorporated into cheap biosensors suitable for consumer use in the near future.

Keywords

nanoparticle polymer brush nanocomposites surface-enhanced Raman spectroscopy (SERS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (No. NRF-2016R1A2B4007209).

Supplementary material

12274_2017_1859_MOESM1_ESM.pdf (1.8 mb)
Surface-floating gold nanorod super-aggregates with macroscopic uniformity

References

  1. [1]
    Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.CrossRefGoogle Scholar
  2. [2]
    Wu, J.-L.; Chen, F.-C.; Hsiao, Y.-S.; Chien, F.-C.; Chen, P. L.; Kuo, C.-H.; Huang, M. H.; Hsu, C.-S. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 2011, 5, 959–967.CrossRefGoogle Scholar
  3. [3]
    Hu, M.-S.; Chen, H.-L.; Shen, C.-H.; Hong, L.-S.; Huang, B.-R.; Chen, K.-H.; Chen, L.-C. Photosensitive goldnanoparticle-embedded dielectric nanowires. Nat. Mater. 2006, 5, 102–106.CrossRefGoogle Scholar
  4. [4]
    Mangold, M. A.; Calame, M.; Mayor, M.; Holleitner, A. W. Resonant photoconductance of molecular junctions formed in gold nanoparticle arrays. J. Am. Chem. Soc. 2011, 133, 12185–12191.CrossRefGoogle Scholar
  5. [5]
    de la Rica, R.; Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 2012, 7, 821–824.CrossRefGoogle Scholar
  6. [6]
    Rodriguez-Lorenzo, L.; de la Rica, R.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Stevens, M. M. Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat. Mater. 2012, 11, 604–607.CrossRefGoogle Scholar
  7. [7]
    Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.CrossRefGoogle Scholar
  8. [8]
    Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.CrossRefGoogle Scholar
  9. [9]
    Ross, M. B.; Blaber, M. G.; Schatz, G. C. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nat. Commun. 2014, 5, 4090.CrossRefGoogle Scholar
  10. [10]
    Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold nanorods: From synthesis and properties to biological and biomedical applications. Adv. Mater. 2009, 21, 4880–4910.CrossRefGoogle Scholar
  11. [11]
    Agarwal, A.; Huang, S. W.; O' Donnell, M.; Day, K. C.; Day, M.; Kotov, N.; Ashkenazi, S. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 2007, 102, 064701.CrossRefGoogle Scholar
  12. [12]
    Niidome, T.; Akiyama, Y.; Shimoda, K.; Kawano, T.; Mori, T.; Katayama, Y.; Niidome, Y. In vivo monitoring of intravenously injected gold nanorods using near-infrared light. Small 2008, 4, 1001–1007.CrossRefGoogle Scholar
  13. [13]
    Eghtedari, M.; Oraevsky, A.; Copland, J. A.; Kotov, N. A.; Conjusteau, A.; Motamedi, M. High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 2007, 7, 1914–1918.CrossRefGoogle Scholar
  14. [14]
    Shao, X.; Zhang, H. N; Rajian, J. R.; Chamberland, D. L.; Sherman, P. S.; Quesada, C. A.; Koch, A. E.; Kotov, N. A.; Wang, X. D. 125I-labeled gold nanorods for targeted imaging of inflammation. ACS Nano 2011, 5, 8967–8973.CrossRefGoogle Scholar
  15. [15]
    Ke, H. T.; Wang, J. R.; Dai, Z. F.; Jin, Y. S.; Qu, E. Z.; Xing, Z. W.; Guo, C. X.; Liu, J. B.; Yue, X. L. Bifunctional gold nanorod-loaded polymeric microcapsules for both contrast-enhanced ultrasound imaging and photothermal therapy. J. Mater. Chem. 2011, 21, 5561–5564.CrossRefGoogle Scholar
  16. [16]
    Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the nearinfrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.CrossRefGoogle Scholar
  17. [17]
    Kuo, W.-S.; Chang, C.-N.; Chang, Y.-T.; Yang, M.-H.; Chien, Y.-H.; Chen, S.-J.; Yeh, C.-S. Gold nanorods in photodynamic therapy, as hyperthermia agents, and in nearinfrared optical imaging. Angew. Chem., Int. Ed. 2010, 49, 2711–2715.CrossRefGoogle Scholar
  18. [18]
    Li, X. J.; Takashima, M.; Yuba, E.; Harada, A.; Kono, K. PEGylated PAMAM dendrimer-doxorubicin conjugatehybridized gold nanorod for combined photothermalchemotherapy. Biomaterials 2014, 35, 6576–6584.CrossRefGoogle Scholar
  19. [19]
    Li, X. J.; Takeda, K.; Yuba, E.; Harada, A.; Kono, K. Preparation of PEG-modified PAMAM dendrimers having a gold nanorod core and their application to photothermal therapy. J. Mater. Chem. B 2014, 2, 4167–4176.CrossRefGoogle Scholar
  20. [20]
    Smith, A. M.; Mancini, M. C.; Nie, S. M. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.CrossRefGoogle Scholar
  21. [21]
    Tsai, M.-F.; Chang, S.-H. G.; Cheng, F.-Y.; Shanmugam, V.; Cheng, Y.-S.; Su, C.-H.; Yeh, C.-S. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 2013, 7, 5330–5342.CrossRefGoogle Scholar
  22. [22]
    Batson, P. E. Plasmonic modes revealed. Science 2012, 335, 47–48.CrossRefGoogle Scholar
  23. [23]
    Shao, L.; Woo, K. C.; Chen, H. J.; Jin, Z.; Wang, J. F.; Lin, H.-Q. Angle- and energy-resolved plasmon coupling in gold nanorod dimers. ACS Nano 2010, 4, 3053–3062.CrossRefGoogle Scholar
  24. [24]
    Funston, A. M.; Novo, C.; Davis, T. J.; Mulvaney, P. Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 2009, 9, 1651–1658.CrossRefGoogle Scholar
  25. [25]
    Ferrier, R. C.; Lee, H.-S.; Hore, M. J. A.; Caporizzo, M.; Eckmann, D. M.; Composto, R. J. Gold nanorod linking to control plasmonic properties in solution and polymer nanocomposites. Langmuir 2014, 30, 1906–1914.CrossRefGoogle Scholar
  26. [26]
    Jana, N. R.; Pal, T. Anisotropic metal nanoparticles for use as surface-enhanced raman substrates. Adv. Mater. 2007, 19, 1761–1765.CrossRefGoogle Scholar
  27. [27]
    Adams, S. M.; Campione, S.; Caldwell, J. D.; Bezares, F. J.; Culbertson, J. C.; Capolino, F.; Ragan, R. Non-lithographic SERS substrates: Tailoring surface chemistry for Au nanoparticle cluster assembly. Small 2012, 8, 2239–2249.CrossRefGoogle Scholar
  28. [28]
    Murphy, C. J.; Thompson, L. B.; Alkilany, A. M.; Sisco, P. N.; Boulos, S. P.; Sivapalan, S. T.; Yang, J. A.; Chernak, D. J.; Huang, J. The many faces of gold nanorods. J. Phys. Chem. Lett. 2010, 1, 2867–2875.CrossRefGoogle Scholar
  29. [29]
    Vigderman, L.; Khanal, B. P.; Zubarev, E. R. Functional gold nanorods: Synthesis, self-assembly, and sensing applications. Adv. Mater. 2012, 24, 4811–4841.CrossRefGoogle Scholar
  30. [30]
    Hamon, C.; Bizien, T.; Artzner, F.; Even-Hernandez, P.; Marchi, V. Replacement of CTAB with peptidic ligands at the surface of gold nanorods and their self-assembling properties. J. Colloid Interface Sci. 2014, 424, 90–97.CrossRefGoogle Scholar
  31. [31]
    Nepal, D.; Onses, M. S.; Park, K.; Jespersen, M.; Thode, C. J.; Nealey, P. F.; Vaia, R. A. Control over position, orientation, and spacing of arrays of gold nanorods using chemically nanopatterned surfaces and tailored particle-particle-surface interactions. ACS Nano 2012, 6, 5693–5701.CrossRefGoogle Scholar
  32. [32]
    Lee, Y. H.; Lee, C. K.; Tan, B. R.; Rui-Tan, J. M.; Phang, I. Y.; Ling, X. Y. Using the Langmuir–Schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. Nanoscale 2013, 5, 6404–6412.CrossRefGoogle Scholar
  33. [33]
    Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H.-L.; Cheah, K.-W.; Chen, J.-Y.; Wang, J. F. Ordered gold nanostructure assemblies formed by droplet evaporation. Angew. Chem. 2008, 120, 9831–9836.CrossRefGoogle Scholar
  34. [34]
    Peng, B.; Li, G. Y.; Li, D. H.; Dodson, S.; Zhang, Q.; Zhang, J.; Lee, Y. H.; Demir, H. V.; Ling, X. Y.; Xiong, Q. H. Vertically aligned gold nanorod monolayer on arbitrary substrates: Self-assembly and femtomolar detection of food contaminants. ACS Nano 2013, 7, 5993–6000.CrossRefGoogle Scholar
  35. [35]
    Peng, B.; Li, Z. P.; Mutlugun, E.; Hernández-Martínez, P. L.; Li, D. H.; Zhang, Q.; Gao, Y.; Demir, H. V.; Xiong, Q. H. Quantum dots on vertically aligned gold nanorod monolayer: Plasmon enhanced fluorescence. Nanoscale 2014, 6, 5592–5598.CrossRefGoogle Scholar
  36. [36]
    Martín, A.; Schopf, C.; Pescaglini, A.; Wang, J. J.; Iacopino, D. Facile formation of ordered vertical arrays by droplet evaporation of Au nanorod organic solutions. Langmuir 2014, 30, 10206–10212.CrossRefGoogle Scholar
  37. [37]
    Ferhan, A. R.; Guo, L. H.; Kim, D.-H. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass. Langmuir 2010, 26, 12433–12442.CrossRefGoogle Scholar
  38. [38]
    Shao, L.; Ruan, Q. F.; Jiang, R. B.; Wang, J. F. Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics. Small 2014, 10, 802–811.CrossRefGoogle Scholar
  39. [39]
    Tang, W. Q.; Chase, D. B.; Rabolt, J. F. Immobilization of gold nanorods onto electrospun polycaprolactone fibers via polyelectrolyte decoration-A 3D SERS substrate. Anal. Chem. 2013, 85, 10702–10709.CrossRefGoogle Scholar
  40. [40]
    Qian, Y. W.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Huang, Z. L.; Sun, K. X.; Chen, B. Flexible membranes of Ag-nanosheet-grafted polyamide-nanofibers as effective 3D SERS substrates. Nanoscale 2014, 6, 4781–4788.CrossRefGoogle Scholar
  41. [41]
    Akin, M. S.; Yilmaz, M.; Babur, E.; Ozdemir, B.; Erdogan, H.; Tamer, U.; Demirel, G. Large area uniform deposition of silver nanoparticles through bio-inspired polydopamine coating on silicon nanowire arrays for practical SERS applications. J. Mater. Chem. B 2014, 2, 4894–4900.CrossRefGoogle Scholar
  42. [42]
    Zhang, Q.; Lee, Y. H.; Phang, I. Y.; Lee, C. K.; Ling, X. Y. Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles. Small 2014, 10, 2703–2711.CrossRefGoogle Scholar
  43. [43]
    Alvarez-Puebla, R. A.; Agarwal, A.; Manna, P.; Khanal, B. P.; Aldeanueva-Potel, P.; Carbo-Argibay, E.; Pazos-Perez, N.; Vigderman, L.; Zubarev, E. R.; Kotov, N. A. et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc. Natl. Acad. Sci. USA 2011, 108, 8157–8161.CrossRefGoogle Scholar
  44. [44]
    Stewart, A. F.; Lee, A.; Ahmed, A.; Ip, S.; Kumacheva, E.; Walker, G. C. Rational design for the controlled aggregation of gold nanorods via phospholipid encapsulation for enhanced Raman scattering. ACS Nano 2014, 8, 5462–5467.CrossRefGoogle Scholar
  45. [45]
    Hucknall, A.; Kim, D.-H.; Rangarajan, S.; Hill, R. T.; Reichert, W. M.; Chilkoti, A. Simple fabrication of antibody microarrays on nonfouling polymer brushes with femtomolar sensitivity for protein analytes in serum and blood. Adv. Mater. 2009, 21, 1968–1971.CrossRefGoogle Scholar
  46. [46]
    Ferhan, A. R.; Kim, D.-H. In-stacking: A strategy for 3D nanoparticle assembly in densely-grafted polymer brushes. J. Mater. Chem. 2012, 22, 1274–1277.CrossRefGoogle Scholar
  47. [47]
    Ferhan, A. R.; Guo, L. H.; Zhou, X. D.; Chen, P.; Hong, S.; Kim, D.-H. Solid-phase colorimetric sensor based on gold nanoparticle-loaded polymer brushes: Lead detection as a case study. Anal. Chem. 2013, 85, 4094–4099.CrossRefGoogle Scholar
  48. [48]
    Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.CrossRefGoogle Scholar
  49. [49]
    Umadevi, S.; Feng, X.; Hegmann, T. Large area self-assembly of nematic liquid-crystal-functionalized gold nanorods. Adv. Funct. Mater. 2013, 23, 1393–1403.CrossRefGoogle Scholar
  50. [50]
    Kumar, J.; Thomas, R.; Swathi, R. S.; Thomas, K. G. Au nanorod quartets and Raman signal enhancement: Towards the design of plasmonic platforms. Nanoscale 2014, 6, 10454–10459.CrossRefGoogle Scholar
  51. [51]
    Zhou, Y. Z.; Cheng, X. N.; Du, D.; Yang, J.; Zhao, N.; Ma, S. B.; Zhong, T.; Lin, Y. H. Graphene-silver nanohybrids for ultrasensitive surface enhanced Raman spectroscopy: Size dependence of silver nanoparticles. J. Mater. Chem. C 2014, 2, 6850–6858.CrossRefGoogle Scholar
  52. [52]
    He, L. F.; Huang, J. N.; Xu, T. T.; Chen, L. M.; Zhang, K.; Han, S. T.; He, Y.; Lee, S. T. Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate. J. Mater. Chem. 2012, 22, 1370–1374.CrossRefGoogle Scholar
  53. [53]
    Gao, T.; Wang, Y. Q.; Wang, K.; Zhang, X. L.; Dui, J. N.; Li, G. M.; Lou, S. Y.; Zhou, S. M. Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate. ACS Appl. Mater. Interfaces 2013, 5, 7308–7314.CrossRefGoogle Scholar
  54. [54]
    Chen, J.; Gong, Y. J.; Shang, J.; Li, J. L.; Wang, Y.; Wu, K. Two-dimensional Ag nanoparticle tetramer array for surface-enhanced raman scattering measurements. J. Phys. Chem. C 2014, 118, 22702–22710CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Abdul R. Ferhan
    • 1
  • Youju Huang
    • 1
  • Anirban Dandapat
    • 1
  • Dong-Hwan Kim
    • 2
  1. 1.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Chemical EngineeringSungkyunkwan UniversityGyeonggi-doRepublic of Korea

Personalised recommendations