Skip to main content
Log in

Plasmon resonant amplification of a hot electron-driven photodiode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report plasmon resonant excitation of hot electrons in a photodetector based on a metal/oxide/metal (Au/Al2O3/graphene) heterostructure. In this device, hot electrons, excited optically in the gold layer, jump over the oxide barrier and are injected into the graphene layer, producing a photocurrent. To amplify this process, the bottom gold electrode is patterned into a plasmon resonant grating structure with a pitch of 500 nm. The photocurrent produced in this device is measured using 633-nm-wavelength light as a function of incident angle. We observe the maximum photocurrent at ±10° from normal incidence under irra-diation with light polarized parallel to the incident plane (p-polarization) and perpendicular to the lines on the grating, and a constant (angle-independent) photocurrent under irradiation with light polarized perpendicular to the incident plane (s-polarization) and parallel to the grating. These data show an amplification factor of 4.6× under resonant conditions. At the same angle (±10°), we also observe sharp dips in the photoreflectance corresponding to waveve-ctor matching between the incident light and the plasmon mode in the grating. In addition, finite-difference time-domain simulations predict sharp dips in the photoreflectance at ±10°, and the electric field intensity profiles show clear excitation of a plasmon resonant mode when illuminated with p-polarized light at this angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanos-ensors. Nat. Mater. 2008, 7, 442–453.

    Article  Google Scholar 

  2. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.

    Article  Google Scholar 

  3. Liu, Z. W.; Hou, W. B.; Pavaskar, P.; Aykol, M.; Cronin, S. B. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 2011, 11, 1111–1116.

    Article  Google Scholar 

  4. Ingram, D. B.; Linic, S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 2011, 133, 5202–5205.

    Article  Google Scholar 

  5. Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Hot electrons do the impossible: Plas-mon-induced dissociation of H2 on Au. Nano Lett. 2013, 13, 240–247.

    Article  Google Scholar 

  6. Mukherjee, S.; Zhou, L. N.; Goodman, A. M.; Large, N.; Ayala-Orozco, C.; Zhang, Y.; Nordlander, P.; Halas, N. J. Hot-electron-induced dissociation of H2 on gold nano-particles supported on SiO2. J. Am. Chem. Soc. 2014, 136, 64–67.

    Article  Google Scholar 

  7. DuChene, J. S.; Sweeny, B. C.; Johnston-Peck, A. C.; Su, D.; Stach, E. A.; Wei, W. D. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostruc-tures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 2014, 53, 7887–7891.

    Article  Google Scholar 

  8. Robatjazi, H.; Bahauddin, S. M.; Doiron, C.; Thomann, I. Direct plasmon-driven photoelectrocatalysis. Nano Lett. 2015, 15, 6155–6161.

    Article  Google Scholar 

  9. Hou, B. Y.; Shen, L.; Shi, H. T.; Kepadia, R.; Cronin, S. B. Hot electron-driven photocatalytic water splitting. Phys. Chem. Chem. Phys. 2017, 19, 2877–2881.

    Article  Google Scholar 

  10. Chalabi, H.; Schoen, D.; Brongersma, M. L. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett. 2014, 14, 1374–1380.

    Article  Google Scholar 

  11. Zheng, B. Y.; Zhao, H.; Manjavacas, A.; McClain, M.; Nordlander, P.; Halas, N. J. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat. Commun. 2015, 6, 7797.

    Article  Google Scholar 

  12. Govorov, A. O.; Zhang, H.; Gun’ko, Y. K. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C 2013, 117, 16616–16631.

    Article  Google Scholar 

  13. Sundararaman, R.; Narang, P.; Jermyn, A. S.; Goddard III, W. A.; Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 2014, 5, 5788.

    Article  Google Scholar 

  14. Brown, A. M.; Sundararaman, R.; Narang, P.; Goddard III, W. A.; Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geo-metry. ACS Nano 2016, 10, 957–966.

    Article  Google Scholar 

  15. Narang, P.; Sundararaman, R.; Atwater, H. A. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 2016, 5, 96–111.

    Article  Google Scholar 

  16. Sakurai, H.; Haruta, M. Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides. Catal. Today 1996, 29, 361–365.

    Article  Google Scholar 

  17. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Pla-smon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

    Article  Google Scholar 

  18. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95–103.

    Article  Google Scholar 

  19. Rice, J. M.; Stern, L. J.; Guignon, E. F.; Lawrence, D. A.; Lynes, M. A. Antigen-specific T cell phenotyping micro-arrays using grating coupled surface plasmon resonance imaging and surface plasmon coupled emission. Biosens. Bioelectron. 2012, 31, 264–269.

    Article  Google Scholar 

  20. Chen, C. C.; Chang, C. C.; Li, Z.; Levi, A. F. J.; Cronin, S. B. Gate tunable graphene-silicon Ohmic/Schottky contacts. Appl. Phys. Lett. 2012, 101, 223113.

    Article  Google Scholar 

  21. Sze, S. M.; Moll, J. L.; Sugano, T. Range-energy relation of hot electrons in gold. Solid-State Electron. 1964, 7, 509–523.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF Award No. CBET-1512505 (L. S.), Air Force Office of Scientific Research Grant No. FA9550-15-1-0184 (B. H.), Army Research Office (ARO) Award No. W911NF-14-1-0228 (H. S.), Department of Energy (DOE) Award No. DE-FG02-07ER46376 (N. P.), and ACS-PRF grant #55993-ND5 (J. C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. Cronin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Poudel, N., Gibson, G.N. et al. Plasmon resonant amplification of a hot electron-driven photodiode. Nano Res. 11, 2310–2314 (2018). https://doi.org/10.1007/s12274-017-1854-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1854-2

Keywords

Navigation