Skip to main content
Log in

Highly delocalized endohedral metal in Gd@C2v(9)-C82 metallofullerenes co-crystallized with α-S8

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A new Gd@C2v(9)-C82·2.5(S8)·0.5(CS2) co-crystal was prepared for the first time and characterized by single-crystal X-ray diffraction (XRD). The analysis clearly showed that, even though the C2v(9)-C82 cage is fully ordered, the endohedral Gd atoms are highly disordered. This result indicates the presence of highly delocalized endohedral Gd atoms, which has never been reported before. Density functional theory (DFT) calculations were used to rationalize the XRD results. The calculations reveal the presence of two local energy minima, a and b, with the latter existing as four conformers b1–b4. Whereas the energy difference between the two minima is calculated only ∼ 10 kcal/mol, their interconversion is almost impossible due to a high energy barrier, of up to 35.98 kcal/mol. This suggests the existence of multiple low-energy positions for the endohedral Gd atom. In addition, a remarkable electron transfer from the C2v(9)-C82 cage to the S8 moieties was demonstrated, which might result in a modified endohedral environment and further contribute to the occurrence of delocalized endohedral Gd atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Popov, A. A.; Yang, S. F.; Dunsch, L. Endohedral fullerenes. Chem. Rev. 2013, 113, 5989–6113.

    Article  Google Scholar 

  2. Li, C.; Cui, R. L.; Feng, L. Z.; Li, J.; Huang, H.; Yao, H. L.; Guo, X. H.; Dong, J. Q.; Xing, G. M.; Liu, Z. et al. Synthesis of a UCNPs@SiO2@Gadofullerene nanocomposite and its application in UCL/MR bimodal imaging. RSC Adv. 2016, 6, 98968–98974.

    Article  Google Scholar 

  3. Cui, R. L.; Li, J.; Huang, H.; Zhang, M. Y.; Guo, X. H.; Chang, Y. N.; Li, M.; Dong, J. Q.; Sun, B. Y.; Xing, G. M. Novel carbon nanohybrids as highly efficient magnetic resonance imaging contrast agents. Nano Res. 2015, 8, 1259–1268.

    Article  Google Scholar 

  4. Li, F.-F.; Chen, N.; Mulet-Gas, M.; Triana, V.; Murillo, J.; Rodríguez-Fortea, A.; Poblet, J. M.; Echegoyen, L. Ti2S@D 3h(24109)-C78: A sulfide cluster metallofullerene containing only transition metals inside the cage. Chem. Sci. 2013, 4, 3404–3410.

    Article  Google Scholar 

  5. Chaur, M. N.; Melin, F.; Ortiz, A. L.; Echegoyen, L. Chemical, electrochemical, and structural properties of endohedral metallofullerenes. Angew. Chem., Int. Ed. 2009, 48, 7514–7538.

    Article  Google Scholar 

  6. Osuna, S.; Swart, M.; Sola, M. The reactivity of endohedral fullerenes. What can be learnt from computational studies? Phys. Chem. Chem. Phys. 2011, 13, 3585–3603.

    Article  Google Scholar 

  7. Lu, X.; Bao, L. P.; Akasaka, T.; Nagase, S. Recent progress in the chemistry of endohedral metallofullerenes. Chem. Commun. 2014, 50, 14701–14715.

    Article  Google Scholar 

  8. Takata, M.; Umeda, B.; Nishibori, E.; Sakata, M.; Saito, Y.; Ohno, M.; Shinohara, H. Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 1995, 377, 46–49.

    Article  Google Scholar 

  9. Wang, C. R.; Kai, T.; Tomiyama, T.; Yoshida, T.; Kobayashi, Y.; Nishibori, E.; Takata, M.; Sakata, M.; Shinohara, H. A scandium carbide endohedral metallofullerene: (Sc2C2)@C84. Angew. Chem., Int. Ed. 2001, 40, 397–399.

    Article  Google Scholar 

  10. Lu, X.; Slanina, Z.; Akasaka, T.; Tsuchiya, T.; Mizorogi, N.; Nagase, S. Yb@C2n (n = 40, 41, 42): New fullerene allotropes with unexplored electrochemical properties. J. Am. Chem. Soc. 2010, 132, 5896–5905.

    Article  Google Scholar 

  11. Kodama, T.; Ozawa, N.; Miyake, Y.; Sakaguchi, K.; Nishikawa, H.; Ikemoto, I.; Kikuchi, K.; Achiba, Y. Structural study of three isomers of Tm@C82 by 13C NMR spectroscopy. J. Am. Chem. Soc. 2002, 124, 1452–1455.

    Article  Google Scholar 

  12. Sun, B. Y.; Feng, L.; Shi, Z. J.; Gu, Z. N. Improved extraction of metallofullerenes with DMF at high temperature. Carbon 2002, 40, 1591–1595.

    Article  Google Scholar 

  13. Stevenson, S.; Harich, K.; Yu, H.; Stephen, R. R.; Heaps, D.; Coumbe, C.; Phillips, J. P. Nonchromatographic “stir and filter approach” (SAFA) for isolating Sc3n@C80 metallofullerenes. J. Am. Chem. Soc. 2006, 128, 8829–8835.

    Article  Google Scholar 

  14. Mercado, B. Q.; Jiang, A.; Yang, H.; Wang, Z. M.; Jin, H. X.; Liu, Z. Y.; Olmstead, M. M.; Balch, A. L. Isolation and structural characterization of the molecular nanocapsule Sm2@D 3d(822)-C104. Angew. Chem., Int. Ed. 2009, 48, 9114–9116.

    Article  Google Scholar 

  15. Rodriguez-Fortea, A.; Balch, A. L.; Poblet, J. M. Endohedral metallofullerenes: A unique host-guest association. Chem. Soc. Rev. 2011, 40, 3551–3563.

    Article  Google Scholar 

  16. Dai, X.; Gao, Y.; Xin, M. S.; Wang, Z. G.; Zhou, R. H. The ground state and electronic structure of Gd@C82: A systematic theoretical investigation of first principle density functionals. J. Chem. Phys. 2015, 141, 244306.

    Article  Google Scholar 

  17. Gao, X. J.; Chen, B. Z.; Gao, X. F. Isolated aromatic patches as a rule to select metallofullerene multiple adducts with high chemical stabilities. Carbon 2016, 96, 980–986.

    Article  Google Scholar 

  18. Garcia-Borràs, M.; Osuna, S.; Luis, J. M.; Swart, M.; Solà, M. The role of aromaticity in determining the molecular structure and reactivity of (endohedral metallo)fullerenes. Chem. Soc. Rev. 2014, 43, 5089–5105.

    Article  Google Scholar 

  19. Cong, H. L.; Yu, B.; Akasaka, T.; Lu, X. Endohedral metallofullerenes: An unconventional core-shell coordination union. Coord. Chem. Rev. 2013, 257, 2880–2898.

    Article  Google Scholar 

  20. Lu, X.; Akasaka, T.; Nagase, S. Chemistry of endohedral metallofullerenes: The role of metals. Chem. Commun. 2011, 47, 5942–5957.

    Article  Google Scholar 

  21. Garcia-Borras, M.; Cerón, M. R.; Osuna, S.; Izquierdo, M.; Luis, J. M.; Echegoyen, L.; Solà, M. The regioselectivity of bingel-hirsch cycloadditions on isolated pentagon rule endohedral metallofullerenes. Angew. Chem., Int. Ed. 2016, 55, 2374–2377.

    Article  Google Scholar 

  22. Kurihara, H.; Lu, X.; Iiduka, Y.; Nikawa, H.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Chemical understanding of carbide cluster metallofullerenes: A case study on Sc2C2@C 2v(5)-C80 with complete X-ray crystallographic characterizations. J. Am. Chem. Soc. 2012, 134, 3139–3144.

    Article  Google Scholar 

  23. Akasaka, T.; Kono, T.; Takematsu, Y.; Nikawa, H.; Nakahodo, T.; Wakahara, T.; Ishitsuka, M. O.; Tsuchiya, T.; Maeda, Y.; Liu, M. T. H. et al. Does Gd@C82 have an anomalous endohedral structure? Synthesis and single crystal X-ray structure of the carbene adduct. J. Am. Chem. Soc. 2008, 130, 12840–12841.

    Article  Google Scholar 

  24. Suzuki, M.; Yamada, M.; Maeda, Y.; Sato, S.; Takano, Y.; Uhlik, F.; Slanina, Z.; Lian, Y. F.; Lu, X.; Nagase, S. et al. The unanticipated dimerization of Ce@C 2v(9)C82 upon co-crystallization with Ni(octaethylporphyrin) and comparison with monomeric M@C 2v(9)C82 (M = La, Sc, and Y). Chem.—Eur. J. 2016, 22, 18115–18122.

    Article  Google Scholar 

  25. Bao, L. P.; Pan, C. W.; Slanina, Z.; Uhlik, F.; Akasaka, T.; Lu, X. Isolation and crystallographic characterization of the labile isomer of Y@C82 co-crystallized with Ni(OEP): Unprecedented dimerization of pristine metallofullerenes. Angew. Chem., Int. Ed. 2016, 55, 9234–9238.

    Article  Google Scholar 

  26. Hu, Z. Q.; Hao, Y. J.; Slanina, Z.; Gu, Z. G.; Shi, Z. J.; Uhlik, F.; Zhao, Y. F.; Feng, L. Popular C82 fullerene cage encapsulating a divalent metal ion Sm2+: Structure and electrochemistry. Inorg. Chem. 2015, 54, 2103–2108.

    Article  Google Scholar 

  27. Yang, H.; Jin, H. X.; Wang, X. Q.; Liu, Z. Y.; Yu, M. L.; Zhao, F. K.; Mercado, B. Q.; Olmstead, M. M.; Balch, A. L. X-ray crystallographic characterization of new soluble endohedral fullerenes utilizing the popular C82 bucky cage. Isolation and structural characterization of Sm@C 3v(7)-C82, Sm@C s(6)-C82, and Sm@C 2(5)-C82. J. Am. Chem. Soc. 2012, 134, 14127–14136.

    Article  Google Scholar 

  28. Sato, S.; Nikawa, H.; Seki, S.; Wang, L.; Luo, G. F.; Lu, J.; Haranaka, M.; Tsuchiya, T.; Nagase, S.; Akasaka, T. A co-crystal composed of the paramagnetic endohedral metallofullerene La@C82 and a nickel porphyrin with high electron mobility. Angew. Chem., Int. Ed. 2012, 51, 1589–1591.

    Article  Google Scholar 

  29. Suzuki, M.; Slanina, Z.; Mizorogi, N.; Lu, X.; Nagase, S.; Olmstead, M. M.; Balch, A. L.; Akasaka, T. Single-crystal X-ray diffraction study of three Yb@C82 isomers co-crystallized with NiII(octaethylporphyrin). J. Am. Chem. Soc. 2012, 134, 18772–18778.

    Article  Google Scholar 

  30. Suzuki, M.; Lu, X.; Sato, S.; Nikawa, H.; Mizorogi, N.; Slanina, Z.; Tsuchiya, T.; Nagase, S.; Akasaka, T. Where does the metal cation stay in Gd@C 2v(9)C82? A single-crystal X-ray diffraction study. Inorg. Chem. 2012, 51, 5270–5273.

    Article  Google Scholar 

  31. Zhao, S. S.; Zhao, P.; Cai, W. T.; Bao, L. P.; Chen, M. Q.; Xie, Y. P.; Zhao, X.; Lu, X. Stabilization of giant fullerenes C 2(41)-C90, D 3(85)-C92, C 1(132)-C94, C 2(157)-C96, and C 1(175)-C98 by encapsulation of a large La2C2 cluster: The importance of cluster-cage matching. J. Am. Chem. Soc. 2017, 139, 4724–4728.

    Article  Google Scholar 

  32. Wang, Z. Y.; Aoyagi, S.; Omachi, H.; Kitaura, R.; Shinohara, H. Isolation and structure determination of a missing endohedral fullerene La@C70 through in situ trifluoromethylation. Angew. Chem., Int. Ed. 2016, 55, 199–202.

    Article  Google Scholar 

  33. Shinohara, H. Endohedral metallofullerenes. Rep. Prog. Phys. 2000, 63, 843–892.

    Article  Google Scholar 

  34. Senapati, L.; Schrier, J.; Whaley, K. B. Electronic transport, structure, and energetics of endohedral Gd@C82 metallofullerenes. Nano Lett. 2004, 4, 2073–2078.

    Article  Google Scholar 

  35. Mizorogi, N.; Nagase, S. Do Eu@C82 and Gd@C82 have an anomalous endohedral structure? Chem. Phys. Lett. 2006, 431, 110–112.

    Article  Google Scholar 

  36. Liu, L.; Gao, B.; Chu, W. S.; Chen, D. L.; Hu, T. D.; Wang, C. R.; Dunsch, L.; Marcelli, A.; Luo, Y.; Wu, Z. Y. The structural determination of endohedral metallofullerene Gd@C82 by XANES. Chem. Commun. 2008, 474–476.

    Google Scholar 

  37. Sado, Y.; Aoyagi, S.; Kitaura, R.; Miyata, Y.; Nishibori, E.; Sawa, H.; Sugimoto, K.; Shinohara, H. Structure of Tm@C82(I) metallofullerene by single-crystal X-ray diffraction using the 1:2 Co-crystal with octaethylporphyrin nickel (Ni(OEP)). J. Phys. Chem. C 2013, 117, 6437–6442.

    Article  Google Scholar 

  38. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C 2015, 71, 3–8.

    Article  Google Scholar 

  39. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theore. Chem. Acc. 2008, 120, 215–241.

    Article  Google Scholar 

  40. Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theore. Chim. Acta 1973, 28, 213–222.

    Article  Google Scholar 

  41. Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972, 56, 2257–2261.

    Article  Google Scholar 

  42. Cao, X. Y.; Dolg, M. Valence basis sets for relativistic energy-consistent small-core lanthanide pseudopotentials. J. Chem. Phys. 2001, 115, 7348–7355.

    Article  Google Scholar 

  43. Cao, X. Y.; Dolg, M. Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J. Mol. Struct.: THEOCHEM 2002, 581, 139–147.

    Article  Google Scholar 

  44. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2009.

    Google Scholar 

  45. Ghiassi, K. B.; Chen, S. Y.; Wescott, J.; Balch, A. L.; Olmstead, M. M. New insights into the structural complexity of C60·2S8: Two crystal morphologies, two phase changes, four polymorphs. Cryst. Growth Des. 2015, 15, 404–410.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2016YFA0203200) and the National Natural Science Foundation of China (Nos. 51372158, 21402202, 11505191 and U1632113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lai Feng, Xingfa Gao or Baoyun Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Gao, X.J., Yao, H. et al. Highly delocalized endohedral metal in Gd@C2v(9)-C82 metallofullerenes co-crystallized with α-S8. Nano Res. 11, 2277–2284 (2018). https://doi.org/10.1007/s12274-017-1849-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1849-z

Keywords

Navigation