Skip to main content
Log in

Grain boundaries modulating active sites in RhCo porous nanospheres for efficient CO2 hydrogenation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Designing active sites and engineering electronic properties of heterogeneous catalysts are both promising strategies that can be employed to enhance the catalytic activity for CO2 hydrogenation. Herein, we report RhCo porous nanospheres with a high density of accessible grain boundaries as active sites for improved catalytic performance in the hydrogenation of CO2 to methanol. The porous nanosphere morphological feature allows for a high population of grain boundaries to be accessible to the reactants, thereby providing sufficient active sites for the catalytic reaction. Moreover, in-situ X-ray photoelectron spectroscope (XPS) results revealed the creation of negatively charged Rh surface atoms that promoted the activation of CO2 to generate CO2δ and methoxy intermediates. The obtained RhCo porous nanospheres exhibited remarkable low-temperature catalytic activity with a turnover frequency (TOFRh) of 612 h–1, which was 6.1 and 2.5 times higher than that of Rh/C and RhCo nanoparticles, respectively. This work not only develops an efficient catalyst for CO2 hydrogenation, but also demonstrates a potential approach for the modulation of active sites and electronic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.

    Article  Google Scholar 

  2. Ozin, G. A. Throwing new light on the reduction of CO2. Adv. Mater. 2015, 27, 1957–1963.

    Article  Google Scholar 

  3. Calaza, F.; Stiehler, C.; Fujimori, Y.; Sterrer, M.; Beeg, S.; Ruiz-Oses, M.; Nilius, N.; Heyde, M.; Parviainen, T.; Honkala, K. et al. Carbon dioxide activation and reaction induced by electron transfer at an oxide-metal interface. Angew. Chem., Int. Ed. 2015, 54, 12484–12487.

    Article  Google Scholar 

  4. Rezayee, N. M.; Huff, C. A.; Sanford, M. S. Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol. J. Am. Chem. Soc. 2015, 137, 1028–1031.

    Article  Google Scholar 

  5. Beller, M.; Bornscheuer, U. T. CO2 fixation through hydrogenation by chemical or enzymatic methods. Angew. Chem., Int. Ed. 2014, 53, 4527–4528.

    Article  Google Scholar 

  6. Yang, X. F.; Kattel, S.; Senanayake, S. D.; Boscoboinik, J. A.; Nie, X. W.; Graciani, J.; Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Chen, J. G. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 interface. J. Am. Chem. Soc. 2015, 137, 10104–10107.

    Article  Google Scholar 

  7. Spencer, M. S. The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction. Top. Catal. 1999, 8, 259.

    Article  Google Scholar 

  8. Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 2014, 6, 320–324.

    Article  Google Scholar 

  9. Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014, 345, 546–550.

    Article  Google Scholar 

  10. Khan, M. U.; Wang, L. B.; Liu, Z.; Gao, Z. H.; Wang, S. P.; Li, H. L.; Zhang, W. B.; Wang, M. L.; Wang, Z. F.; Ma, C. et al. Pt3Co octapods as superior catalysts of CO2 hydrogenation. Angew. Chem., Int. Ed. 2016, 55, 9548–9552.

    Article  Google Scholar 

  11. Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Chiu, C. Y.; Ruan, L. Y.; Liu, Y.; Li, M. F.; Duan, X. F.; Huang, Y. High density catalytic hot spots in ultrafine wavy nanowires. Nano Lett. 2014, 14, 3887–3894.

    Article  Google Scholar 

  12. Wang, L. B.; Zhao, S. T.; Liu, C. X.; Li, C.; Li, X.; Li, H. L.; Wang, Y. C.; Ma, C.; Li, Z. Y.; Zeng, J. Aerobic oxidation of cyclohexane on catalysts based on twinned and single-crystal Au75Pd25 bimetallic nanocrystals. Nano Lett. 2015, 15, 2875–2880.

    Article  Google Scholar 

  13. Bucur, R. V.; Indrea, E. Influence of the crystalline microstructure on the diffusivity of hydrogen in palladium galvanostatic permeation and X-ray diffraction measurements. Acta Metall. 1987, 35, 1325–1332.

    Article  Google Scholar 

  14. Maier, J. Defect chemistry: Composition, transport, and reactions in the solid state; part I: Thermodynamics. Angew. Chem., Int. Ed. 1993, 32, 313–335.

    Article  Google Scholar 

  15. Maier, J. Defect chemistry: Composition, transport, and reactions in the solid state; part II: Kinetics. Angew. Chem., Int. Ed. 1993, 32, 528–542.

    Article  Google Scholar 

  16. Kuo, C. H.; Lamontagne, L. K.; Brodsky, C. N.; Chou, L. Y.; Zhuang, J.; Sneed, B. T.; Sheehan, M. K.; Tsung, C. K. The effect of lattice strain on the catalytic properties of Pd nanocrystals. ChemSusChem 2013, 6, 1993–2000.

    Article  Google Scholar 

  17. He, R.; Wang, Y. C.; Wang, X. Y.; Wang, Z. T.; Liu, G.; Zhou, W.; Wen, L. P.; Li, Q. X.; Wang, X. P.; Chen, X. Y. et al. Facile synthesis of pentacle gold-copper alloy nanocrystals and their plasmonic and catalytic properties. Nat. Commun. 2014, 5, 4327.

    Google Scholar 

  18. Sneed, B. T.; Brodsky, C. N.; Kuo, C. H.; Lamontagne, L. K.; Jiang, Y.; Wang, Y.; Tao, F.; Huang, W. X.; Tsung, C. K. Nanoscale-phase-separated Pd-Rh boxes synthesized via metal migration: An archetype for studying lattice strain and composition effects in electrocatalysis. J. Am. Chem. Soc. 2013, 135, 14691–14700.

    Article  Google Scholar 

  19. Wang, M. L.; Wang, L. B.; Li, H. L.; Du, W. P.; Khan, M. U.; Zhao, S. T.; Ma, C.; Li, Z. Y.; Zeng, J. Ratio-controlled synthesis of CuNi octahedra and nanocubes with enhanced catalytic activity. J. Am. Chem. Soc. 2015, 137, 14027–14030.

    Article  Google Scholar 

  20. Wang, L. B.; Wang, Y. C.; Guo, H. Y.; Huang, J. L.; Zhao, Y. L.; Liu, Q. Y.; Wu, X. J.; Zeng, J. Au-Pd alloy octapods with high electrocatalytic activity for the oxidation of formic acid. Part. Part. Syst. Charact. 2015, 32, 295–300.

    Article  Google Scholar 

  21. Li, Y. W.; Chan, S. H.; Sun, Q. Heterogeneous catalytic conversion of CO2: A comprehensive theoretical review. Nanoscale 2015, 7, 8663–8683.

    Article  Google Scholar 

  22. Pacansky, J.; Wahlgren, U.; Bagus, P. S. SCF ab-initio ground-state energy surfaces for CO2 and CO2 . J. Chem. Phys. 1975, 62, 2740–2744.

    Article  Google Scholar 

  23. Dietz, L.; Piccinin, S.; Maestri, M. Mechanistic insights into CO2 activation via reverse water-gas shift on metal surfaces. J. Phys. Chem. C 2015, 119, 4959–4966.

    Article  Google Scholar 

  24. Solymosi, F. The bonding, structure and reactions of CO2 adsorbed on clean and promoted metal surfaces. J. Mol. Catal. 1991, 65, 337–358.

    Article  Google Scholar 

  25. Freund, H. J.; Roberts, M. W. Surface chemistry of carbon dioxide. Surf. Sci. Rep. 1996, 25, 225–273.

    Article  Google Scholar 

  26. Compton, R. N.; Reinhardt, P. W.; Cooper, C. D. Collisional ionization of Na, K, and Cs by CO2, COS, and CS2: Molecular electron affinities. J. Chem. Phys. 1975, 63, 3821–3827.

    Article  Google Scholar 

  27. Sommerfeld, T.; Meyer, H. D.; Cederbaum, L. S. Potential energy surface of the CO2 anion. Phys. Chem. Chem. Phys. 2004, 6, 42–45.

    Article  Google Scholar 

  28. Mudiyanselage, K.; Senanayake, S. D.; Feria, L.; Kundu, S.; Baber, A. E.; Graciani, J.; Vidal, A. B.; Agnoli, S.; Evans, J.; Chang, R. et al. Importance of the metal-oxide interface in catalysis: In situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew. Chem., Int. Ed. 2013, 52, 5101–5105.

    Article  Google Scholar 

  29. Seiferth, O.; Wolter, K.; Dillmann, B.; Klivenyi, G.; Freund, H. J.; Scarano, D.; Zecchina, A. IR investigations of CO2 adsorption on chromia surfaces: Cr2O3 (0001)/Cr(110) versus polycrystalline α-Cr2O3. Surf. Sci. 1999, 421, 176–190.

    Article  Google Scholar 

  30. Arena, F.; Barbera, K.; Italiano, G.; Bonura, G.; Spadaro, L.; Frusteri, F. Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J. Catal. 2007, 249, 185–194.

    Article  Google Scholar 

  31. Zhang, H. B.; Liang, X. L.; Dong, X.; Li, H. Y.; Lin, G. D. Multi-walled carbon nanotubes as a novel promoter of catalysts for CO/CO2 hydrogenation to alcohols. Catal. Surv. Asia 2009, 13, 41–58.

    Article  Google Scholar 

  32. Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic hydrogenation of carbon dioxide using Ir(III)−pincer complexes. J. Am. Chem. Soc. 2009, 131, 14168–14169.

    Article  Google Scholar 

  33. Jadhav, S. G.; Vaidya, P. D.; Bhanage, B. M.; Joshi, J. B. Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies. Chem. Eng. Res. Des. 2014, 92, 2557–2567.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFA0208300), the National Natural Science Foundation of China (Nos. 11505187, 11404314, 11422547, 21471143, and 51676178) and the Fundamental Research Funds for the Central Universities (Nos. WK2310000066, WK2310000050, WK2340000076, and KY2310000019), and Youth Innovation Promotion Association CAS (Nos. CX2310000054 and CX2310000091). We also thank the beamline 1W1B at the Beijing Synchrotron Radiation Facility and the Beamline BL14W1 at Shanghai Synchrotron Radiation Facility for help in characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xusheng Zheng or Tao Yao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Lin, Y., Pan, H. et al. Grain boundaries modulating active sites in RhCo porous nanospheres for efficient CO2 hydrogenation. Nano Res. 11, 2357–2365 (2018). https://doi.org/10.1007/s12274-017-1841-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1841-7

Keywords

Navigation