Nano Research

, Volume 11, Issue 6, pp 3106–3115 | Cite as

6-inch uniform vertically-oriented graphene on soda-lime glass for photothermal applications

  • Haina Ci
  • Huaying Ren
  • Yue Qi
  • Xudong Chen
  • Zhaolong Chen
  • Jincan Zhang
  • Yanfeng ZhangEmail author
  • Zhongfan LiuEmail author
Research Article


Vertically-oriented graphene (VG) has many advantages over flat lying graphene, including a large surface area, exposed sharp edges, and non-stacking three-dimensional geometry. Recently, VG nanosheets assembled on specific substrates have been used for applications in supersensitive gas sensors and high-performance energy storage devices. However, to realize these intriguing applications, the direct growth of high-quality VG on a functional substrate is highly desired. Herein, we report the direct synthesis of VG nanosheets on traditional soda-lime glass due to its low-cost, good transparency, and compatibility with many applications encountered in daily life. This synthesis was achieved by a direct-current plasma enhanced chemical vapor deposition (dc-PECVD) route at 580 °C, which is right below the softening point of the glass, and featured a scale-up size ∼6 inches. Particularly, the fabricated VG nanosheets/glass hybrid materials at a transmittance range of 97%–34% exhibited excellent solarthermal performances, reflected by a 70%–130% increase in the surface temperature under simulated sunlight irradiation. We believe that this graphene glass hybrid material has great potential for use in future transparent “green-warmth” construction materials.


vertically oriented graphene (VG) soda-lime glass photothermal application antireflective material 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Key Research and Development Program of China (No. 2016YFA0200103), the Beijing Municipal Science and Technology Commission (No. Z161100002116020), the Ministry of Science and Technology of China (No. 2013CB932603), the National Natural Science Foundation of China (Nos. 51432002, 51290272 and 51472008), the Beijing Municipal Science and Technology Planning Project (No. Z151100003315013), and the Certificate of China Postdoctoral Science Foundation Grant (No. 2016M590010).

Supplementary material

12274_2017_1839_MOESM1_ESM.pdf (1.9 mb)
6-inch uniform vertically-oriented graphene on soda-lime glass for photothermal applications


  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  3. [3]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  4. [4]
    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.CrossRefGoogle Scholar
  5. [5]
    Sun, J. Y.; Chen, Y. B.; Priydarshi, M. K.; Chen, Z.; Bachmatiuk, A.; Zou, Z. Y.; Chen, Z. L.; Song, X. J.; Gao, Y. F.; Rümmeli, M. H. et al. Direct chemical vapor deposition-derived graphene glasses targeting wide ranged applications. Nano Lett. 2015, 15, 5846–5854.CrossRefGoogle Scholar
  6. [6]
    Chen, Y. B.; Sun, J. Y.; Gao, J. F.; Du, F.; Han, Q.; Nie, Y. F.; Chen, Z. L.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D. L. et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839–7846.CrossRefGoogle Scholar
  7. [7]
    Sun, J. Y.; Chen, Y. B.; Cai, X.; Ma, B. J.; Chen, Z. L.; Priydarshi, M. K.; Chen, K.; Gao, T.; Song, X. J.; Ji, Q. Q. et al. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Res. 2015, 8, 3496–3504.CrossRefGoogle Scholar
  8. [8]
    Sun, J. Y.; Chen, Z. L.; Yuan, L.; Chen, Y. B.; Ning, J.; Liu, S. W.; Ma, D. L.; Song, X. J.; Priydarshi, M. K.; Bachmatiuk, A. et al. Direct chemical-vapor-deposition-fabricated, largescale graphene glass with high carrier mobility and uniformity for touch panel applications. ACS Nano 2016, 10, 11136–11144.CrossRefGoogle Scholar
  9. [9]
    Chen, X. D.; Chen, Z. L.; Jiang, W. S.; Zhang, C. H.; Sun, J. Y.; Wang, H. H.; Xin, W.; Lin, L.; Priydarshi, M. K.; Yang, H. et al. Fast growth and broad applications of 25-inch uniform graphene glass. Adv. Mater. 2017, 29, 1603428.CrossRefGoogle Scholar
  10. [10]
    Miller, J. R.; Outlaw, R. A.; Holloway, B. C. Graphene double-layer capacitor with ac line-filtering performance. Science 2010, 329, 1637–1639.CrossRefGoogle Scholar
  11. [11]
    Yu, K. H.; Bo, Z.; Lu, G. H.; Mao, S.; Cui, S. M.; Zhu, Y. W.; Chen, X. Q.; Ruoff, R. S.; Chen, J. H. Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication. Nanoscale Res. Lett. 2011, 6, 202.CrossRefGoogle Scholar
  12. [12]
    Soin, N.; Roy, S. S.; Lim, T. H.; McLaughlin, J. A. D. Microstructural and electrochemical properties of vertically aligned few layered graphene (FLG) nanoflakes and their application in methanol oxidation. Mater. Chem. Phys. 2011, 129, 1051–1057.CrossRefGoogle Scholar
  13. [13]
    Shang, N. G.; Papakonstantinou, P.; McMullan, M.; Chu, M.; Stamboulis, A.; Potenza, A.; Dhesi, S. S.; Marchetto, H. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 2008, 18, 3506–3514.CrossRefGoogle Scholar
  14. [14]
    Yang, C. Y.; Bi, H.; Wan, D. Y.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes. J. Mater. Chem. A 2013, 1, 770–775.CrossRefGoogle Scholar
  15. [15]
    Wu, Y.; Qiao, P.; Chong, T.; Shen, Z. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv. Mater. 2002, 14, 64–67.CrossRefGoogle Scholar
  16. [16]
    Wang, J. J.; Zhu, M. Y.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 2004, 42, 2867–2872.CrossRefGoogle Scholar
  17. [17]
    Liu, W. H.; Dang, T.; Xiao, Z. H.; Li, X.; Zhu, C. C.; Wang, X. L. Carbon nanosheets with catalyst-induced wrinkles formed by plasma-enhanced chemical-vapor deposition. Carbon 2011, 49, 884–889.CrossRefGoogle Scholar
  18. [18]
    Ma, Y. F.; Jang, H.; Kim, S. J.; Pang, C.; Chae, H. Copper-assisted direct growth of vertical graphene nanosheets on glass substrates by low-temperature plasma-enhanced chemical vapour deposition process. Nanoscale Res. Lett. 2015, 10, 308.CrossRefGoogle Scholar
  19. [19]
    Bo, Z.; Yu, K. H.; Lu, G. H.; Wang, P. X.; Mao, S.; Chen, J. H. Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition. Carbon 2011, 49, 1849–1858.CrossRefGoogle Scholar
  20. [20]
    Obraztsov, A. N.; Zolotukhin, A. A.; Ustinov, A. O.; Volkov, A. P.; Svirko, Y.; Jefimovs, K. DC discharge plasma studies for nanostructured carbon CVD. Diamond Relat. Mater. 2003, 12, 917–920.CrossRefGoogle Scholar
  21. [21]
    Zhao, J.; Shaygan, M.; Eckert, J.; Meyyappan, M.; Rummeli, M. H. A growth mechanism for free-standing vertical graphene. Nano Lett. 2014, 14, 3064–3071.CrossRefGoogle Scholar
  22. [22]
    Louchev, O. A.; Sato, Y.; Kanda, H. Growth mechanism of carbon nanotube forests by chemical vapor deposition. Appl. Phys. Lett. 2002, 80, 2752–2754.CrossRefGoogle Scholar
  23. [23]
    Wu, Y. H.; Yang, B. J. Effects of localized electric field on the growth of carbon nanowalls. Nano Lett. 2002, 2, 355–359.CrossRefGoogle Scholar
  24. [24]
    Wu, Y. H.; Yang, B. J.; Zong, B. Y.; Sun, H.; Shen, Z. X.; Feng, Y. P. Carbon nanowalls and related materials. J. Mater. Chem. 2004, 14, 469–477.CrossRefGoogle Scholar
  25. [25]
    Zhu, M. Y.; Wang, J. J.; Holloway, B. C.; Outlaw, R. A.; Zhao, X.; Hou, K.; Shutthanandan, V.; Manos, D. M. A mechanism for carbon nanosheet formation. Carbon 2007, 45, 2229–2234.CrossRefGoogle Scholar
  26. [26]
    Ni, Z. H.; Fan, H. M.; Feng, Y. P.; Shen, Z. X.; Yang, B. J.; Wu, Y. H. Raman spectroscopic investigation of carbon nanowalls. J. Chem. Phys. 2006, 124, 204703.CrossRefGoogle Scholar
  27. [27]
    Bo, Z.; Yang, Y.; Chen, J. H.; Yu, K. H.; Yan, J. H.; Cen, K. F. Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 2013, 5, 5180–5204.CrossRefGoogle Scholar
  28. [28]
    Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.CrossRefGoogle Scholar
  29. [29]
    Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804.CrossRefGoogle Scholar
  30. [30]
    Hoch, L. B.; O’Brien, P. G.; Jelle, A.; Sandhel, A.; Perovic, D. D.; Mims, C. A.; Ozin, G. A. Nanostructured indium oxide coated silicon nanowire arrays: A hybrid photothermal/photochemical approach to solar fuels. ACS Nano 2016, 10, 9017–9025.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Haina Ci
    • 1
    • 2
  • Huaying Ren
    • 1
    • 2
  • Yue Qi
    • 1
    • 2
  • Xudong Chen
    • 1
  • Zhaolong Chen
    • 1
  • Jincan Zhang
    • 1
    • 2
  • Yanfeng Zhang
    • 1
    • 3
    Email author
  • Zhongfan Liu
    • 1
    Email author
  1. 1.Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
  3. 3.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations