Skip to main content
Log in

Building 2D quasicrystals from 5-fold symmetric corannulene molecules

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The formation of long-range ordered aperiodic molecular films on quasicrystalline substrates is a new challenge that provides an opportunity for further surface functionalization. This aim can be realized through the smart selection of molecular building blocks, based on symmetry-matching between the underlying quasicrystal and individual molecules. It was previously found that the geometric registry between the C60 molecules and the 5- and 10-fold surfaces was key to the growth of quasiperiodic organic layers. However, an attempt to form a quasiperiodic C60 network on i-Ag-In-Yb substrates was unsuccessful, resulting in disordered molecular films. Here we report the growth of 5-fold symmetric corannulene C20H10 molecules on the 5-fold surfaces of i-Ag-In-Yb quasicrystals. Low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) revealed long-range quasiperiodic order and 5-fold rotational symmetry in self-assembled corannulene films. Recurrent decagonal molecular rings were seen, resulting from the decoration of specific adsorption sites with local pentagonal symmetry by corannulenes, adsorbed with their bowl-openings pointing away from the surface. They were identified as (Ag, In)-containing rhombic triacontahedral (RTH) cluster centers and pentagonal Yb motifs, which cannot be occupied simultaneously due to steric hindrance. It is proposed that symmetry-matching between the molecule and specific substrate sites drives this organization. Alteration of the molecular rim by the introduction of CH substituents appeared to increase molecule mobility on the potential energy surface and facilitate trapping at these specific sites. This finding suggests that rational selection of molecular moiety enables the templated self-assembly of molecules leading to an ordered aperiodic corannulene layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953.

    Article  Google Scholar 

  2. Dubois, J. M. Properties- and applications of quasicrystals and complex metallic alloys. Chem. Soc. Rev. 2012, 41, 6760–6777.

    Article  Google Scholar 

  3. Janot, C. Quasicrystals: A Primer; 2nd ed. Oxford University Press: Oxford, 2012.

    Google Scholar 

  4. Steurer, W.; Deloudi, S. Crystallography of Quasicrystals: Concepts, Methods and Structures; Springer: Berlin, Heidelberg, 2009.

    Google Scholar 

  5. Zeng, X. B.; Ungar, G.; Liu, Y. S.; Percec, V.; Dulcey, A. E.; Hobbs, J. K. Supramolecular dendritic liquid quasicrystals. Nature 2004, 428, 157–160.

    Article  Google Scholar 

  6. Talapin, D. V.; Shevchenko, E. V.; Bordnarchuk, M. I.; Ye, X. C.; Chen, J.; Murray, C. B. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 2009, 461, 964–967.

    Article  Google Scholar 

  7. Förster, S.; Meinel, K.; Hammer, R.; Trautmann, M.; Widdra, W. Quasicrystalline structure formation in a classical crystalline thin-film system. Nature 2013, 502, 215–218.

    Article  Google Scholar 

  8. Ecija, D.; Urgel, J. I.; Papageorgiou, A. C.; Joshi, S.; Auwärter, W.; Seitsonen, A. P.; Klyatskaya, S.; Ruben, M.; Fischer, S.; Vijayaraghavan, S. et al. Five-vertex Archimedean surface tessellation by lanthanide-directed molecular selfassembly. Proc. Natl. Acad. Sci. USA 2013, 110, 6678–6681.

    Article  Google Scholar 

  9. Urgel, J. I.; Ecija, D.; Auwärter, W.; Papageorgiou, A. C.; Seitsonen, A. P.; Vijayaraghavan, S.; Joshi, S.; Fischer, S.; Reichter, J.; Barth, J. V. Five-vertex lanthanide coordination on surfaces: a route to sophisticated nanoarchitectures and tessellations. J. Phys. Chem. C 2014, 118, 12908–12915.

    Article  Google Scholar 

  10. Urgel, J. I.; Écija, D.; Lyu, G. Q.; Palma, C. A.; Auwärter, W.; Lin, N.; Barth, J. V. Quasicrystallinity expressed in two-dimensional coordination networks. Nat. Chem. 2016, 8, 657–662.

    Article  Google Scholar 

  11. Wasio, N. A.; Quardokus, R. C.; Forrest, R. P.; Lent, C. S.; Corcelli, S. A.; Christie, J. A.; Henderson, K. W.; Kandel, S. A. Self-assembly of hydrogen-bonded two-dimensional quasicrystals. Nature 2014, 507, 86–89.

    Article  Google Scholar 

  12. Li, X.; Kang, F. Y.; Inagaki, M. Buckybowls: Corannulene and its derivatives. Small 2016, 12, 3206–3223.

    Article  Google Scholar 

  13. Parschau, M.; Fasel, R.; Ernst, K. H.; Gröning, O.; Brandenberger, L.; Schillinger, R.; Greber, T.; Seitsonen, A. P.; Wu, Y. T.; Siegel, J. S. Buckybowls on metal surfaces: Symmetry mismatch and enantiomorphism of corannulene on Cu(110). Angew. Chem., Int. Ed. 2007, 46, 8258–8261.

    Article  Google Scholar 

  14. Bauert, T.; Merz, L.; Bandera, D.; Parschau, M.; Siegel, J. S.; Ernst, K. H. Building 2D crystals from 5-fold-symmetric molecules. J. Am. Chem. Soc. 2009, 131, 3460–3461.

    Article  Google Scholar 

  15. Guillermet, O.; Niemi, E.; Nagarajan, S.; Bouju, X.; Martrou, D.; Gourdon, A.; Gauthier, S. Self-assembly of five-fold-symmetric molecules on a threefold-symmetric surface. Angew. Chem., Int. Ed. 2009, 48, 1970–1973.

    Article  Google Scholar 

  16. Bauert, T.; Baldridge, K. K.; Siegel, J. S.; Ernst K. H. Surface-assisted bowl-in-bowl stacking of nonplanar aromatic hydrocarbons. Chem. Commun. 2011, 47, 7995–7997.

    Article  Google Scholar 

  17. Bauert, T.; Zoppi, L.; Koller, G.; Siegel, J. S.; Baldridge, K. K.; Ernst, K. H. Quadruple anionic buckybowls by solid-state chemistry of corannulene and cesium. J. Am. Chem. Soc. 2013, 135, 12857–12860.

    Article  Google Scholar 

  18. Smerdon, J. A.; Young, K. M.; Lowe, M.; Hars, S. S.; Yadav, T. P.; Hesp, D.; Dhanak, V. R.; Tsai, A. P.; Sharma, H. R.; McGrath, R. Templated quasicrystalline molecular ordering. Nano Lett. 2014, 14, 1184–1189.

    Article  Google Scholar 

  19. Fournée, V.; Gaudry, É.; Ledieu, J.; de Weerd, M. C.; Wu, D. M.; Lograsso, T. Self-organized molecular films with long-range quasiperiodic order. ACS Nano 2014, 8, 3646–3653.

    Article  Google Scholar 

  20. Nugent, P. J.; Smerdon, J. A.; McGrath, R.; Shimoda, M.; Cui, C.; Tsai, A. P.; Sharma, H. R. Step-terrace morphology and reactivity to C60 of the five-fold icosahedral Ag–In–Yb quasicrystal. Philos. Mag. 2011, 91, 2862–2869.

    Article  Google Scholar 

  21. Sharma, H. R.; Shimoda, M.; Sagisaka, K.; Takakura, H.; Smerdon, J. A.; Nugent, P. J.; McGrath, R.; Fujita, D.; Ohhashi, S.; Tsai, A. P. Structure of the fivefold surface of the Ag-In-Yb icosahedral quasicrystal. Phys. Rev. B. 2009, 80, 121401.

    Article  Google Scholar 

  22. Takakura, H.; Gómez, C. P.; Yamamoto, A.; de Boissieu, M.; Tsai, A. P. Atomic structure of the binary icosahedral Yb–Cd quasicrystal. Nat. Mater. 2007, 6, 58–63.

    Article  Google Scholar 

  23. Ledieu, J.; Muryn, C. A.; Thornton, G.; Diehl, R. D.; Lograsso, T. A.; Delaney, D. W.; McGrath, R. C60 adsorption on the quasicrystalline surface of Al70Pd21Mn9. Surf. Sci. 2001, 472, 89–96.

    Article  Google Scholar 

  24. Cox, E. J.; Ledieu, J.; Dhanak, V. R.; Barrett, S. D.; Jenks, C. J.; Fisher, I.; McGrath, R. An STM and SXPS study of the interaction of C60 with the ten-fold surface of the Al72Ni11Co17 quasicrystal. Surf. Sci. 2004, 566–568, 1200–1205.

    Article  Google Scholar 

  25. Socolar, J. E. S.; Steinhardt, P. J. Quasicrystals. II. Unit-cell configurations. Phys. Rev. B 1986, 34, 617–647.

    Article  Google Scholar 

  26. Nozawa, K.; Ishii, Y. Theoretical studies on clean and adsorbed surfaces of Ag-In-Yb. Philos. Mag. 2011, 91, 2913–2919.

    Article  Google Scholar 

  27. Cui, C.; Tsai, A. P. Growth of large single-grain quasicrystals in the Ag–In–Yb system by Bridgman method. J. Crystal Growth 2009, 312, 131–135.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Lorraine Region and the European C-MAC consortium. A. P. T. would like to thank the support from “Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Fournée.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalashnyk, N., Ledieu, J., Gaudry, É. et al. Building 2D quasicrystals from 5-fold symmetric corannulene molecules. Nano Res. 11, 2129–2138 (2018). https://doi.org/10.1007/s12274-017-1830-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1830-x

Keywords

Navigation