Skip to main content
Log in

Ultrathin nanoporous metal–semiconductor heterojunction photoanodes for visible light hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Plasmonic metal–semiconductor nano-heterojunctions (NHJs), with their superior photocatalytic performance, provide opportunities for the efficient utilization of solar energy. However, scientific significance and technical challenges remain in the development of suitable metal–semiconductor NHJ photoelectrodes for new generation flexible optoelectronic devices, which often require complex processing. Herein, we report integrated three-dimensional (3D) NHJ photoelectrodes by conformally coating cadmium sulfide (CdS) nanolayers onto ultrathin nanoporous gold (NPG) films via a facile electrodeposition method. Localized surface plasmon resonance (LSPR) of NPG enhances the electron–hole pair generation and separation. Moreover, the direct contact interface and high conductive framework structure of the NHJs boosts the photogenerated carrier separation and transport. Hence, the NHJs exhibit evidently enhanced photocurrent density and hydrogen evolution rate relative to CdS deposited on either gold (Au) foil or fluorine-doped tin oxide (FTO) at 0 V vs. SCE (saturated calomel electrode) under visible-light irradiation. Moreover, they demonstrate a surprisingly stable photoelectrochemical hydrogen evolution (PEC-HE) activity over 104 s of continuous irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

    Article  Google Scholar 

  2. Li, Z. S.; Luo, W. J.; Zhang, M. L.; Feng, J.Y.; Zou, Z. G. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 2013, 6, 347–370.

    Article  Google Scholar 

  3. Scheuermann, A. G.; Lawrence, J. P.; Kemp, K. W.; Ito, T.; Walsh, A.; Chidsey, C. E. D.; Hurley, P. K.; McIntyre, P. C. Design principles for maximizing photovoltage in metaloxide-protected water-splitting photoanodes. Nat. Mater. 2016, 15, 99–105.

    Article  Google Scholar 

  4. Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunctionphotocatalysts for water splitting-a critical review. Energy Environ. Sci. 2015, 8, 731–759.

    Article  Google Scholar 

  5. Yang, J. H.; Wang, D. E.; Han, H. X.; Li, C. Roles ofcocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

    Article  Google Scholar 

  6. Sun, Z. J.; Zheng, H. F.; Li, J. S.; Du, P. W. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci. 2015, 8, 2668–2676.

    Article  Google Scholar 

  7. Zhuang, T. T.; Liu, Y.; Li, Y.; Zhao, Y.; Wu, L.; Jiang, J.; Yu, S. H. Integration of semiconducting sulfides for fullspectrum solar energy absorption and efficient charge separation. Angew. Chem., Int. Ed. 2016, 55, 6396–6400.

    Article  Google Scholar 

  8. Wei, Y. K.; Su, J. Z.; Wan, X. K.; Guo, L. J.; Vayssieres, L. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting. Nano Res. 2016, 9, 1561–1569.

    Article  Google Scholar 

  9. Wu, F. L.; Cao, F. R.; Liu, Q.; Lu, H.; Li, L. Enhancing photoelectrochemical activity with three-dimensional p-CuO/ n-ZnO junction photocathodes. Sci. China Mater. 2016, 59, 825–832.

    Article  Google Scholar 

  10. Kalisman, P.; Nakibli, Y.; Amirav, L. Perfect photon-tohydrogen conversion efficiency. Nano Lett. 2016, 16, 1776–1781.

    Article  Google Scholar 

  11. Chen, X. X.; Li, Y. P.; Pan, X. Y.; Cortie, D.; Huang, X. T.; Yi, Z. G. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 2016, 7, 12273.

    Article  Google Scholar 

  12. Zhang, J. M.; Jin, X.; Morales-Guzman, P. I.; Yu, X.; Liu, H.; Zhang, H.; Razzari, L.; Claverie, J. P. Engineering the absorption and field enhancement properties of Au-TiO2 nanohybrids via whispering gallery mode resonances for photocatalytic water splitting. ACS Nano 2016, 10, 4496–4503.

    Article  Google Scholar 

  13. Hu, D. Y.; Diao, P.; Xu, D.; Wu, Q. Y. Gold/WO3 nanocompositephotoanodes for plasmonic solar water splitting. Nano Res. 2016, 9, 1735–1751.

    Article  Google Scholar 

  14. Xian, J. J.; Li, D. Z.; Chen, J.; Li, X. F.; He, M.; Shao, Y.; Yu, L. H.; Fang, J. L. TiO2 nanotube array-graphene-CdS quantum dots composite film in Z-scheme with enhanced photoactivity and photostability. ACS Appl. Mater. Interfaces 2014, 6, 13157–13166.

    Article  Google Scholar 

  15. Kofuji, Y.; Isobe, Y.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Carbon nitride-aromatic diimidegraphenenanohybrids: Metal-free photocatalysts for solar-tohydrogen peroxide energy conversion with 0.2% efficiency. J. Am. Chem. Soc. 2016, 138, 10019–10025.

    Article  Google Scholar 

  16. Liu, W. X.; Liu, Z. Y.; Wang, G. N.; Sun, X. M.; Li, Y. P.; Liu, J. F. Carbon coated Au/TiO2 mesoporous microspheres: A novel selective photocatalyst. Sci. China Mater. 2017, 60, 438–448.

    Article  Google Scholar 

  17. Li, J. T.; Cushing, S. K.; Zheng, P.; Meng, F. K.; Chu, D.; Wu, N. Q. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 2013, 4, 2651.

    Google Scholar 

  18. Cushing, S. K.; Wu, N. Q. Plasmon-enhanced solar energy harvesting. Electrochem. Soc. Interface 2013, 22, 63–67.

    Article  Google Scholar 

  19. Thomann, I.; Pinaud, B. A.; Chen, Z. B.; Clemens, B. M.; Jaramillo, T. F.; Brongersma, M. L. Plasmon enhanced solarto- fuel energy conversion. Nano Lett. 2011, 11, 3440–3446.

    Article  Google Scholar 

  20. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

    Article  Google Scholar 

  21. Xing, X. L.; Liu, R. J.; Yu, X. L.; Zhang, G. J.; Cao, H. B.; Yao, J. N.; Ren, B. Z.; Jiang, Z. X.; Zhao, H. Self-assembly of CdS quantum dots with polyoxometalate encapsulated gold nanoparticles: Enhanced photocatalytic activities. J. Mater. Chem. A 2013, 1, 1488–1494.

    Article  Google Scholar 

  22. Li, G. L.; Cherqui, C.; Bigelow, N. W.; Duscher, G.; Straney, P. J.; Millstone, J. E.; Masiello, D. J.; Camden, J. P. Spatially mapping energy transfer from single plasmonic particles to semiconductor substrates via STEM/EELS. Nano Lett. 2015, 15, 3465–3471.

    Article  Google Scholar 

  23. Smith, J. G.; Faucheaux, J. A.; Jain, P. K. Plasmon resonances for solar energy harvesting: A mechanistic outlook. Nanotoday 2015, 10, 67–80.

    Article  Google Scholar 

  24. Warren, S. C.; Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 2012, 5, 5133–5146.

    Article  Google Scholar 

  25. Maaroof, A. I.; Lee, H.; Heo, K.; Park, J.; Cho, D.; Lee, B. Y.; Seong, M. J.; Hong, S. Plasmon-exciton interactions in hybrid structures of au nanohemispheres and CdS nanowires for improved photoconductive devices. J. Phys. Chem. C 2013, 117, 24543–24548.

    Article  Google Scholar 

  26. Li, M.; Yu, X. F.; Liang, S.; Peng, X. N.; Yang, Z. J.; Wang, Y. L.; Wang, Q. Q. Synthesis of Au-CdS core–shell hetero-nanorods with efficient exciton–plasmon interactions. Adv. Funct. Mater. 2011, 21, 1788–1794.

    Article  Google Scholar 

  27. Wu, K. F.; Rodríguez-Córdoba, W. E.; Yang, Y.; Lian, T. Q. Plasmon-induced hot electron transfer from the Au tip to CdSrod in CdS-Au nanoheterostructures. Nano Lett. 2013, 13, 5255–5263.

    Article  Google Scholar 

  28. Wang, X. T.; Liow, C.; Qi, D. P.; Zhu, B. W.; Leow, W. R.; Wang, H.; Xue, C.; Chen, X. D.; Li, S. Z. Programmable photo-electrochemical hydrogen evolution based on multisegmented CdS-Au nanorod arrays. Adv. Mater. 2014, 26, 3506–3512.

    Article  Google Scholar 

  29. Saliba, M.; Zhang, W.; Burlakov, V. M.; Stranks, S. D.; Sun, Y.; Ball, J. M.; Johnston, M. B.; Goriely, A.; Wiesner, U.; Snaith, H. J.Plasmonic-induced photon recycling in metal halide perovskite solar cells. Adv. Funct. Mater. 2015, 25, 5038–5046.

    Article  Google Scholar 

  30. Zheng, X. L.; Song, J. P.; Ling, T.; Hu, Z. P.; Yin, P. F.; Davey, K.; Du, X. W.; Qiao, S. Z. Strongly coupled nafion molecules and ordered porous CdS networks for enhanced visible-light photoelectrochemical hydrogen evolution. Adv. Mater. 2016, 28, 4935–4942.

    Article  Google Scholar 

  31. Chen, M.; Gu, J. J.; Sun, C.; Zhao, Y. X.; Zhang, R. X.; You, X. Y.; Liu, Q. L.; Zhang, W.; Su, Y. S.; Su, H. L. et al. Light-driven overall water splitting enabled by a photodember effect realized on 3D plasmonic structures. ACS Nano 2016, 10, 6693–6701.

    Article  Google Scholar 

  32. Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Y. A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew. Chem., Int. Ed. 2013, 125, 1248–1252.

    Article  Google Scholar 

  33. Yan, L. J.; Liu, Y.; Yan, Y. N.; Wang, L. F.; Han, J.; Wang, Y. N.; Zhou, G. W.; Swihart, M. T.; Xu, X. H. Improved plasmon-assisted photoelectric conversion efficiency across entire ultraviolet-visible region based on antenna-on zinc oxide/silver three-dimensional nanostructured films. Nano Res. 2017. DOI 10.1007/s12274-017-1663-7.

    Google Scholar 

  34. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

    Article  Google Scholar 

  35. Ye, M. D.; Xin, X. K.; Lin, C. J.; Lin, Z. Q. High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett. 2011, 11, 3214–3220.

    Article  Google Scholar 

  36. Chen, W. T.; Yang, T. T.; Hsu, Y. J. Au-CdS core–shell nanocrystals with controllable shell thickness and photoinduced charge separation property. Chem. Mater. 2008, 20, 7204–7206.

    Article  Google Scholar 

  37. Yin, X. L.; He, G. Y.; Sun, B.; Jiang, W. J.; Xue, D. J.; Xia, A. D.; Wan, L. J.; Hu, J. S. Rational design and electron transfer kinetics of MoS2/CdSnanodots-on-nanorods for efficient visible-light-driven hydrogen generation. Nano Energy 2016, 28, 319–329.

    Article  Google Scholar 

  38. Lang, X. Y.; Qian, L. H.; Guan, P. F.; Zi, J.; Chen, M. W. Localized surface Plasmon resonance of nanoporous gold. Appl. Phys. Lett. 2011, 98, 093701.

    Article  Google Scholar 

  39. Jia, C. C.; Yin, H. M.; Ma, H. Y.; Wang, R. Y.; Ge, X. B.; Zhou, A. Q.; Xu, X. H.; Ding, Y. Enhanced photoelectrocatalytic activity of methanol oxidation on TiO2-decorated nanoporous gold. J. Phys. Chem. C 2009, 113, 16138–16143.

    Article  Google Scholar 

  40. Jia, C. C.; Li, X. X.; Xin, N.; Gong, Y.; Guan, J. X.; Meng, L. A.; Meng, S.; Guo, X. F. Interface-engineered plasmonics in metal/semiconductor heterostructures. Adv. Energy Mater. 2016, 6, 1600431.

    Article  Google Scholar 

  41. Zhang, L.; Chen, L. Y.; Liu, H. W.; Hou, Y.; Hirata, A.; Fujita, T.; Chen, M. W. Effect of residual silver on surfaceenhanced Raman scattering of dealloyednanoporousgold. J. Phys. Chem. C 2011, 115, 19583–19587.

    Article  Google Scholar 

  42. Zhang, W. Q.; Rahmani, M.; Niu, W. X.; Ravaine, S.; Hong, M. H.; Lu, X. M. Tuning interior nanogaps of double-shelled Au/Ag nanoboxes for surface-enhanced Raman scattering. Sci. Rep. 2015, 5, 8382.

    Article  Google Scholar 

  43. Achermann, M. Exciton–plasmon interactions in metalsemiconductor nanostructures. J. Phys. Chem. Lett. 2010, 1, 2837–2843.

    Article  Google Scholar 

  44. Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous gold leaf: “Ancient technology”/advanced material. Adv. Mater. 2004, 16, 1897–1900.

    Article  Google Scholar 

  45. Li, J.; Yin, H. M.; Li, X. B.; Okunishi, E.; Shen, Y. L.; He, J.; Tang, Z. K.; Wang, W. X.; Yücelen, E.; Li, C. et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction. Nat. Energy 2017, 2, 17111

    Article  Google Scholar 

  46. Fakharuddin, A.; Di Giacomo, F.; Palma, A. L.; Matteocci, F.; Ahmed, I.; Razza, S.; D’Epifanio, A.; Licoccia, S.; Ismail, J.; Di Carlo, A. et al. Vertical TiO2 nanorods as a medium for stable and high-efficiency perovskite solar modules. ACS Nano 2015, 9, 8420–8429.

    Article  Google Scholar 

  47. Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y.B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623.

    Article  Google Scholar 

  48. Ibrahim, I.; Lim, H. N.; Abou-Zied, O. K.; Huang, N. M.; Estrela, P.; Pandikumar, A. Cadmium sulfide nanoparticles decorated with Au Quantum dots as ultrasensitive photoelectrochemical sensor for selective detection of copper(II) ions. J. Phys. Chem. C 2016, 120, 22202–22214.

    Article  Google Scholar 

  49. Khon, E.; Mereshchenko, A.; Tarnovsky, A. N.; Acharya, K.; Klinkova, A.; Hewa-Kasakarage, N. N.; Nemitz, I.; Zamkov, M. Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites. Nano Lett. 2011, 11, 1792–1799.

    Article  Google Scholar 

  50. Maity, P.; Debnath, T.; Ghosh, H. N. Ultrafast hole- and electron-transfer dynamics in CdS-dibromofluorescein (DBF) supersensitized quantum dot solar cell materials. J. Phys. Chem. Lett. 2013, 4, 4020–4025.

    Article  Google Scholar 

  51. Jana, A.; Bhattacharya, C.; Datta, J. Enhanced photoelectrochemical activity of electro-synthesized CdS-Bi2S3 composite films grown with self-designed cross-linked structure. Electrochim. Acta 2010, 55, 6553–6562.

    Article  Google Scholar 

  52. Iozzo, D. A. B.; Tong, M.; Wu, G.; Furlani, E. P. Numerical analysis of electric double layer capacitors with mesoporous electrodes: Effects of electrode and electrolyte properties. J. Phys. Chem. C 2015, 119, 25235–25242.

    Article  Google Scholar 

  53. Tang, Y. H.; Hu, X.; Liu, C. B. Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO2 nanotube array for highly stable photocatalytic activity. Phys. Chem. Chem. Phys. 2014, 16, 25321–25329.

    Article  Google Scholar 

  54. Duwez, A.S. Exploiting electron spectroscopies to probe the structure and organization of self-assembled monolayers: a review. J. ElectronSpectrosc. Relat.Phenom. 2004, 134, 97–138.

    Article  Google Scholar 

  55. Ma, X.; Zhao, K.; Tang, H. J.; Chen, Y.; Lu, C. G.; Liu, W.; Gao, Y.; Zhao, H. J.; Tang, Z. Y. New insight into the role of gold nanoparticles in Au@CdScore–shell nanostructures for hydrogen evolution. Small 2014, 10, 4664–4670.

    Article  Google Scholar 

  56. Murray, W. A.; Barnes, W. L.Plasmonic materials. Adv. Mater. 2007, 19, 3771–3782.

    Article  Google Scholar 

  57. Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Efficient hotelectron transfer by a plasmon-induced interfacial chargetransfer transition. Science 2015, 349, 632–635.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51671145), the National Thousand Young Talents Program of China, the Tianjin Municipal Education Commission, the Tianjin Municipal Science and Technology Commission (No. 16JCYBJC17000) and the Fundamental Research Funds of Tianjin University of Technology. We would like to thank Dr. Anna Carlsson from FEI Company for her assistance with the atomic-resolution structure and EELS analyses, and Y. D. also acknowledges useful discussions and experimental assistance from Dr. Yajun Gao, Dr. Rongyue Wang, Dr. Chuancheng Jia, Xuanxuan Bi, and Junli Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ding.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhao, Y., He, K. et al. Ultrathin nanoporous metal–semiconductor heterojunction photoanodes for visible light hydrogen evolution. Nano Res. 11, 2046–2057 (2018). https://doi.org/10.1007/s12274-017-1821-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1821-y

Keywords

Navigation