Skip to main content
Log in

In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li–S batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon nanotube (CNT) clusters grown in situ in three-dimensional (3D) porous graphene networks (3DG-CNTs), with integrated structure and remarkable electronic conductivity, are desirable S host materials for Li–S batteries. 3DG-CNT exhibits a high surface area (1,645 m2·g−1), superior electronic conductivity of 1,055 S·m−1, and a 3D porous networked structure. Large clusters of CNTs anchored on the inner walls of 3D graphene networks act as capillaries, benefitting restriction of agglomeration by high contents of immersed S. Moreover, the capillary-like CNT clusters grown in situ in the pores efficiently form restricted spaces for Li polysulfides, significantly reducing the shuttling effect and promoting S utilization throughout the charge/discharge process. With an areal S mass loading of 81.6 wt.%, the 3DG-CNT/S electrode exhibits an initial specific capacity reaching 1,229 mA·h·g−1 at 0.5 C and capacity decays of 0.044% and 0.059% per cycle at 0.5 and 1 C, respectively, over 500 cycles. The electrode material also reveals a remarkable rate performance and the large capacity of 812 mA·h·g−1 at 3 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

    Article  Google Scholar 

  2. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    Article  Google Scholar 

  3. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

    Article  Google Scholar 

  4. Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

    Article  Google Scholar 

  5. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    Article  Google Scholar 

  6. Zhu, J. L.; Li, Y. Y.; Kang, S.; Wei, X. L.; Shen, P. K. One-step synthesis of Ni3S2 nanoparticles wrapped with in situ generated nitrogen-self-doped graphene sheets with highly improved electrochemical properties in Li-ion batteries. J. Mater. Chem. A 2014, 2, 3142–3147.

    Article  Google Scholar 

  7. Ji, X. L.; Nazar, L. F. Advances in Li–S batteries. J. Mater. Chem. 2010, 20, 9821–9826.

    Article  Google Scholar 

  8. Choi, S. H.; Ko, Y. N.; Lee, J. K.; Kang, Y. C. 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 2015, 25, 1780–1788.

    Article  Google Scholar 

  9. Fei, L. F.; Li, X. G.; Bi, W. T.; Zhuo, Z. W.; Wei, W. F.; Sun, L.; Lu, W.; Wu, X. J.; Xie, K. Y.; Wu, C. Z. et al. Graphene/sulfur hybrid nanosheets from a space-confined “sauna” reaction for high-performance lithium-sulfur batteries. Adv. Mater. 2015, 27, 5936–5942.

    Article  Google Scholar 

  10. Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 2015, 27, 2891–2898.

    Article  Google Scholar 

  11. Zhu, L.; Peng, H.-J.; Liang, J. Y.; Huang, J. Q.; Chen, C. M.; Guo, X. F.; Zhu, W. C.; Li, P.; Zhang, Q. Interconnected carbon nanotube/graphene nanosphere scaffolds as freestanding paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy 2015, 11, 746–755.

    Article  Google Scholar 

  12. Ji, X. L.; Evers, S.; Black, R.; Nazar, L. F. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2011, 2, 325.

    Article  Google Scholar 

  13. Xi, K.; Kidambi, P. R.; Chen, R. J.; Cao, C. L.; Peng, X. Y.; Ducati, C.; Hofmann, S.; Kumar, R. V. Binder free threedimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. Nanoscale 2014, 6, 5746–5753.

    Article  Google Scholar 

  14. Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for highperformance lithium-sulfur batteries. Nat. Commun. 2016, 7, 10601.

    Article  Google Scholar 

  15. Fang, R. P.; Zhao, S. Y.; Hou, P. X.; Cheng, M.; Wang, S. G.; Cheng, H. M.; Liu, C.; Li, F. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries. Adv. Mater. 2016, 28, 3374–3382.

    Article  Google Scholar 

  16. Li, Y. Y.; Li, Z. S.; Zhang, Q. W.; Shen, P. K. Sulfurinfiltrated three-dimensional graphene-like material with hierarchical pores for highly stable lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 4528–4533.

    Article  Google Scholar 

  17. Zhen, L.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12866–12890.

    Google Scholar 

  18. Choi, Y. J.; Jung, B. S.; Lee, D. J.; Jeong, J. H.; Kim, K. W.; Ahn, H. J.; Cho, K. K.; Gu, H. B. Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys. Scr. 2007, T129, 62–65.

    Article  Google Scholar 

  19. Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

    Article  Google Scholar 

  20. Fanous, J.; Wegner, M.; Grimminger, J.; Andresen, Ä.; Buchmeiser, M. R. Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries. Chem. Mater. 2011, 23, 5024–5028.

    Article  Google Scholar 

  21. Zhou, W. D.; Yu, Y. C.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk–shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736–16743.

    Article  Google Scholar 

  22. Guo, J. C.; Xu, Y. H.; Wang, C. S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett. 2011, 11, 4288–4294.

    Article  Google Scholar 

  23. Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K. T.; Bein, T.; Nazar, L. F. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2012, 51, 3591–3595.

    Article  Google Scholar 

  24. Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/ sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.

    Article  Google Scholar 

  25. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

    Article  Google Scholar 

  26. Jin, F. Y.; Xiao, S.; Lu, L. J.; Wang, Y. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium–sulfur batteries. Nano Lett. 2016, 16, 440–447.

    Article  Google Scholar 

  27. Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 2014, 26, 6100–6105.

    Article  Google Scholar 

  28. Chen, R. J.; Zhao, T.; Lu, J.; Wu, F.; Li, L.; Chen, J. Z.; Tan, G. Q.; Ye, Y. S.; Amine, K. Graphene-based threedimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett. 2013, 13, 4642–4649.

    Article  Google Scholar 

  29. Bae, S. H.; Karthikeyan, K.; Lee, Y. S.; Oh, I. K. Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery. Carbon 2013, 64, 527–536.

    Article  Google Scholar 

  30. Dichiara, A. B.; Sherwood, T. J.; Benton-Smith, J.; Wilson, J. C.; Weinstein, S. J.; Rogers, R. E. Free-standing carbon nanotube/graphene hybrid papers as next generation adsorbents. Nanoscale 2014, 6, 6322–6327.

    Article  Google Scholar 

  31. Wang, D. W.; Zeng, Q. C.; Zhou, G. M.; Yin, L. C.; Li, F.; Cheng, H. M.; Gentle, I. R.; Lu, G. Q. M. Carbon–sulfur composites for Li–S batteries: Status and prospects. J. Mater. Chem. A 2013, 1, 9382–9394.

    Article  Google Scholar 

  32. Zhang, C.; Liu, D. H.; Lv, W.; Wang, D. W.; Wei, W.; Zhou, G. M.; Wang, S. G.; Li, F.; Li, B. H.; Kang, F. Y. et al. A highdensity graphene-sulfur assembly: A promising cathode for compact Li-S batteries. Nanoscale 2015, 7, 5592–5597.

    Article  Google Scholar 

  33. He, J. R.; Chen, Y. F.; Li, P. J.; Fu, F.; Wang, Z. G.; Zhang, W. L. Three-dimensional CNT/graphene–sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 18605–18610.

    Article  Google Scholar 

  34. Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

    Article  Google Scholar 

  35. Nolan, P. E.; Lynch, D. C.; Cutler, A. H. Catalytic disproportionation of CO in the absence of hydrogen: Encapsulating shell carbon formation. Carbon 1994, 32, 477–483.

    Article  Google Scholar 

  36. Orofeo, C. M.; Ago, H.; Hu, B. S.; Tsuji, M. Synthesis of large area, homogeneous, single layer graphene films by annealing amorphous carbon on Co and Ni. Nano Res. 2011, 4, 531–540.

    Article  Google Scholar 

  37. Huang, S. Z.; Zhang, L. L.; Zhu, J. L.; Jiang, S. P.; Shen, P. K. Crumpled nitrogen- and boron-dual-self-doped graphene sheets as an extraordinary active anode material for lithium ion batteries. J. Mater. Chem. A 2016, 4, 14155–14162.

    Article  Google Scholar 

  38. Lillo-Ródenas, M. A.; Juan-Juan, J.; Cazorla-Amorós, D.; Linares-Solano, A. About reactions occurring during chemical activation with hydroxides. Carbon 2004, 42, 1371–1375.

    Article  Google Scholar 

  39. Andrews, R.; Jacques, D.; Qian, D.; Dickey, E. C. Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 2001, 39, 1681–1687.

    Article  Google Scholar 

  40. Huang, S. Z.; Wang, J. Y.; Pan, Z. Y.; Zhu, J. L.; Shen, P. K. Ultrahigh capacity and superior stability of three-dimensional porous graphene networks containing in situ grown carbon nanotube clusters as an anode material for lithium-ion batteries. J. Mater. Chem. A 2017, 5, 7595–7602.

    Article  Google Scholar 

  41. Xu, W. G.; Mao, N. N.; Zhang, J. Graphene: A platform for surface-enhanced Raman spectroscopy. Small 2013, 9, 1206–1224.

    Article  Google Scholar 

  42. Ryu, Z. Y.; Zheng, J. T.; Wang, M. Z.; Zhang, B. J. Characterization of pore size distributions on carbonaceous adsorbents by DFT. Carbon 1999, 37, 1257–1264.

    Article  Google Scholar 

  43. Bao, W. Z.; Su, D. W.; Zhang, W. X.; Guo, X.; Wang, G. X. 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 8746–8756.

    Article  Google Scholar 

  44. Wei, S. Y.; Ma, L.; Hendrickson, K. E.; Tu, Z. Y.; Archer, L. A. Metal-sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc. 2015, 137, 12143–12152.

    Article  Google Scholar 

  45. Chen, S. Q.; Sun, B.; Xie, X. Q.; Mondal, A. K.; Huang, X. D.; Wang, G. X. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life. Nano Energy. 2015, 16, 268–280.

    Article  Google Scholar 

  46. Xu, J.; Su, D. W.; Zhang, W. X.; Bao, W. Z.; Wang, G. X. A nitrogen-sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium-sulfur batteries. J. Mater. Chem. A, 2016, 4, 17381–17393.

    Article  Google Scholar 

  47. Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 2014, 5, 3410.

    Article  Google Scholar 

  48. Kim, J.; Lee, D.-J.; Jung, H.-G.; Sun, Y.-K.; Hassoun, J.; Scrosati, B. An advanced lithium-sulfur battery. Adv. Funct. Mater. 2013, 23, 1076–1080.

    Article  Google Scholar 

  49. Ye, H.; Yin, Y.-X.; Guo, Y.-G. Insight into the loading temperature of sulfur on sulfur/carbon cathode in lithiumsulfur batteries. Electrochim. Acta 2015, 185, 62–68.

    Article  Google Scholar 

  50. Zhang, J.; Yang, C.-P.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.

    Article  Google Scholar 

  51. Du, W.-C.; Yin, Y.-X.; Zeng, X.-X.; Shi, J.-L.; Zhang, S.-F.; Wan, L.-J.; Guo, Y.-G. Wet chemistry synthesis of multidimensional nanocarbon-sulfur hybrid materials with ultrahigh sulfur loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 3584–3590.

    Article  Google Scholar 

  52. Yang, C.-P.; Yin, Y.-X.; Guo, Y.-G.; Wan, L.-J. Electrochemical (de)lithiation of 1D sulfur chains in Li-S batteries: A model system study. J. Am. Chem. Soc. 2015, 137, 2215–2218.

    Article  Google Scholar 

  53. Xin, S.; Gu, L.; Zhao, N.-H.; Yin, Y.-X.; Zhou, L.-J.; Guo, Y.-G.; Wan, L.-J. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.

    Article  Google Scholar 

  54. Tang, C.; Li, B.-Q.; Zhang, Q.; Zhu, L.; Wang, H.-F.; Shi, J.-L.; Wei, F. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577–585.

    Article  Google Scholar 

  55. Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Project of Guangxi Graduate Education (No. P3090098101), the China Postdoctoral Science Foundation (No. 2017M612864), the Major International (Regional) Joint Research Project (No. 51210002), the National Basic Research Program of China (No. 2015CB932304) and the Natural Science Foundation of Guangdong province (No. 2015A030312007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinliang Zhu or Pei Kang Shen.

Electronic supplementary material

12274_2017_1791_MOESM1_ESM.pdf

In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li–S batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Zhang, L., Wang, J. et al. In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li–S batteries. Nano Res. 11, 1731–1743 (2018). https://doi.org/10.1007/s12274-017-1791-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1791-0

Keywords

Navigation