Skip to main content
Log in

A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene nanoplatelets/aluminum (GNPs/Al) nanocomposites were fabricated using a novel two-step method. High resolution transmission electron microscope (HRTEM), Raman, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), EDS mapping, and mechanical testing system (MTS) were applied to characterize the microstructure and mechanical properties of the GNPs/Al nanocomposites. The GNPs were homogeneously dispersed in GNPs/Al nanocomposites, and presented a fine interface behavior and microstructure characteristics. A harmful phase, aluminum carbide (Al4C3), was not observed in significant quantities in the nanocomposite. Compared with pure aluminum, the mechanical properties of the GNPs/Al nanocomposites containing a low volume fraction of GNPs were sharply improved. When 0.5 vol.%, 1.0 vol.%, and 2.0 vol.% GNPs were added to the aluminum matrix, the average compressive strength of GNPs/Al nanocomposites was 297, 345, and 527 MPa, respectively, which remarkably increased the strength over the original aluminum by 330% to 586%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  Google Scholar 

  2. Jiang W. G.; Zeng Y. H.; Qin Q. H.; Luo Q. H. A novel oscillator based on heterogeneous carbon@MoS2 nanotubes. Nano Res. 2016, 9, 1775–1784.

    Article  Google Scholar 

  3. Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area singleand bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

    Article  Google Scholar 

  4. Hao, Y. F.; Bharathi, M. S.; Wang, L.; Liu, Y. Y.; Chen, H.; Nie, S.; Wang, X. H.; Chou, H.; Tan, C.; Fallahazad, B. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 2013, 342, 720–723.

    Article  Google Scholar 

  5. Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  Google Scholar 

  6. Weitz, R. T.; Yacoby, A. Nanomaterials: Graphene rests easy. Nat. Nanotechnol. 2010, 5, 699–700.

    Article  Google Scholar 

  7. Sun, Z. Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549–552.

    Article  Google Scholar 

  8. Istrate, O. M.; Paton, K. R.; Khan, U.; O’Neill, A.; Bell, A. P.; Coleman, J. N. Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 2014, 78, 243–249.

    Article  Google Scholar 

  9. Hu, K. S.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphenepolymer nanocomposites for structural and functional applications. Prog. Poly. Sci. 2014, 39, 1934–1972.

    Article  Google Scholar 

  10. Österholm, A.; Lindfors, T.; Kauppila, J.; Damlin, P.; Kvarnström C. Electrochemical incorporation of graphene oxide into conducting polymer films. Electrochim. Acta 2012, 83, 463–470.

    Article  Google Scholar 

  11. Wang, J. Y.; Li, Z. Q.; Fan, G. L.; Pan, H. H.; Chen, Z. X.; Zhang, D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Mater. 2016, 66, 594–597

    Article  Google Scholar 

  12. Shin, S. E.; Choi, H. J.; Shin, J. H.; Bae, D. H. Strengthening behavior of few-layered graphene/aluminum composites. Carbon 2015, 82, 143–151.

    Article  Google Scholar 

  13. Fattahi, M.; Gholami, A. R.; Eynalvandpour, A.; Ahmadi, E.; Fattahi, Y.; Akhavan, S. Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires. Micron 2014, 64, 20–27.

    Article  Google Scholar 

  14. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

    Article  Google Scholar 

  15. Nieto, A.; Lahiri, D.; Agarwal, A. Nanodynamic mechanical behavior of graphene nanoplatelet-reinforced tantalum carbide. Scripta Mater. 2013, 69, 678–681.

    Article  Google Scholar 

  16. Li, D. S.; Wu, W. Z.; Qin, Q. H.; Zhou, X. L.; Zuo, D. Y.; Lu, S. Q; Gao, Y. B. Microstructure and mechanical properties of graphene/Al composites. Chin. J. Nonferr. Metal. 2015, 25, 1498–1504.

    Google Scholar 

  17. Shin, S. E.; Bae, D. H. Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Compos. Part A: Appl. Sci. Manuf. 2015, 78, 42–47.

    Article  Google Scholar 

  18. Bastwros, M.; Kim, G. Y.; Zhu, C.; Zhang, K.; Wang, S. R; Tang, X. D.; Wang, X. W. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. Part B: Eng. 2014, 60, 111–118.

    Article  Google Scholar 

  19. Rashad, M.; Pan, F. S.; Tang, A. T.; Asif, M. Effect of Graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci: Mater. Int. 2014, 2, 101–108.

    Article  Google Scholar 

  20. Li, J. L.; Xiong, Y. C.; Wang, X. D.; Yan, S. J.; Yang, C.; He, W. W.; Chen, J. Z.; Wang, S. Q.; Zhang, X. Y.; Dai, S. L. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater. Sci. Eng. A 2015, 626, 400–405.

    Article  Google Scholar 

  21. Pérez-Bustamante, R.; Bolaños-Morales, D.; Bonilla-Martínez, J.; Estrada-Guela, I.; Martínez-Sánchez, R. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys Compd. 2014, 615, S578–S582.

    Article  Google Scholar 

  22. Deng, C. F.; Wang, D. Z.; Zhang, X. X.; Li, A. B. Processing and properties of carbon nanotubes reinforced aluminum composites. Mater. Sci. Eng. A 2007, 444, 138–145.

    Article  Google Scholar 

  23. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

    Article  Google Scholar 

  24. Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 2014, 53, 1126–1130.

    Article  Google Scholar 

  25. Jeon, C. H.; Jeong, Y. H.; Seo, J. J.; Tien, H. N.; Hong, S. T.; Yum, Y. J.; Hur, S. H., Lee, K. J. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int. J. Precis. Eng. Manuf. 2014, 15, 1235–1239.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (NSFC) (Nos. 51562027 and 11372100), and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duosheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Ye, Y., Liao, X. et al. A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites. Nano Res. 11, 1642–1650 (2018). https://doi.org/10.1007/s12274-017-1779-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1779-9

Keywords

Navigation