Skip to main content
Log in

Gas template-assisted spray pyrolysis: A facile strategy to produce porous hollow Co3O4 with tunable porosity for high-performance lithium-ion battery anode materials

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Porous hollow Co3O4 microspheres have been synthesized from a mixed cobalt nitrate and urea solution through spray pyrolysis followed by calcination at 600 °C in air. This porous hollow Co3O4 is assembled by nanoparticles and exhibits variable porosity depending on the amount of gas in the system. In pyrolysis process, urea continuously decomposes into gaseous components, which act as a template to control the porous structure. The amount of gas escaping from precursor droplets can directly influence the porosity of the microspheres and the size of the nanoparticles controlled by the ratio of urea to cobalt nitrate. Electrochemical measurements show that the performance of the porous hollow Co3O4 microspheres is related to the porosity and size of the nanoparticles. The sample with optimal porosity delivers a high first charge capacity of 1,417.9 mAh·g−1 at 0.2C (1C = 890 mA·g−1), and superior charge cycle performance of 1,012.7 mAh·g−1 after 100 cycles. In addition, the optimized material displays satisfactory rate performance of 1,012.4 mAh·g−1 at 1C after 50 cycles and 881.3 mAh·g−1 at 2C after 300 cycles. Superior charge/discharge capacity, excellent rate performance and high yield achieved in this study is promising for the development of high-performance Co3O4 anode materials for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, F.; Huang, R.; Mu, D. B.; Wu, B. R.; Chen, Y. J. Controlled synthesis of graphitic carbon-encapsulated a-Fe2O3 nanocomposite via low-temperature catalytic graphitization of biomass and its lithium storage property. Electrochim. Acta 2016, 187, 508–516.

    Article  Google Scholar 

  2. Li, X. Y.; Ma,Y. Y.; Cao, G. Z.; Qu, Y. Q. FeOx@carbon yolk/shell nanowires with tailored void spaces as stable and high-capacity anodes for lithium ion batteries. J. Mater. Chem. A 2016, 4, 12487–12496.

    Article  Google Scholar 

  3. Zhang, Q. Y.; Luo, X.; Wang, L. N.; Zhang, L. F.; Khalid, B.; Gong, J. H.; Wu, H. Lithium-ion battery cycling for magnetism control. Nano Lett. 2016, 16, 583–587.

    Article  Google Scholar 

  4. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  5. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

    Article  Google Scholar 

  6. Chan, C. K.; Peng, H. L; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  Google Scholar 

  7. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  Google Scholar 

  8. Zeng, H. B.; Duan, G. T.; Li, Y.; Yang, S. K.; Xu, X. X.; Cai, W. P. Blue luminescence of ZnO nanoparticles based on non-equilibrium process: defect origins and emission controls. Adv. Funct. Mater. 2010, 20, 561–572.

    Article  Google Scholar 

  9. Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

    Article  Google Scholar 

  10. Zhang, S. L.; Yan, Z.; Li, Y. F.; Chen, Z. F.; Zeng, H. B. Atomically thin arsenene and antimonene: Semimetalsemiconductor and indirect-direct band-gap transitions. Angew. Chem., Int. Ed. 2015, 54, 3112–3115.

    Article  Google Scholar 

  11. Hu, J. K.; Sun, C. F.; Gillette, E.; Gui, Z.; Wang, Y. H.; Lee, S. B. Dual-template ordered mesoporous carbon/Fe2O3 nanowires as lithium-ion battery anodes. Nanoscale 2016, 8, 12958–12969.

    Article  Google Scholar 

  12. Zeng, L.; Pan, A. Q.; Liang, S. Q.; Wang, J. B.; Cao, G. Z. Novel synthesis of V2O5 hollow microspheres for lithium ion batteries. Sci. China Mater. 2016, 59, 567–573.

    Article  Google Scholar 

  13. Huang, G. Y.; Xu, S. M.; Lu, S. S.; Li, L. Y.; Sun, H. Y. Micro-/nanostructured Co3O4 anode with enhanced rate capability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 7236–7243.

    Article  Google Scholar 

  14. Du, H. R.; Yuan, C.; Huang, K. F.; Wang, W. H.; Zhang, K.; Geng, B. Y. A novel gelatin-guided mesoporous bowknot-like Co3O4 anode material for high-performance lithium-ion batteries. J. Mater. Chem. A 2017, 5, 5342–5350.

    Article  Google Scholar 

  15. Wang, B.; Lu, X. Y.; Tang, Y. Y. Synthesis of snowflakeshaped Co3O4 with a high aspect ratio as a high capacity anode material for lithium ion batteries. J. Mater. Chem. A 2015, 3, 9689–9699.

    Article  Google Scholar 

  16. Hu, R. Z.; Zhang, H. P.; Bu, Y. F.; Zhang, H. Y.; Zhao, B. T.; Yang, C. H. Porous Co3O4 nanofibers surface-modified by reduced graphene oxide as a durable, high-rate anode for lithium ion battery. Electrochim. Acta 2017, 228, 241–250.

    Article  Google Scholar 

  17. Li, Z. P.; Yu, X. Y.; Paik, U. Facile preparation of porous Co3O4 nanosheets for high-performance lithium ion batteries and oxygen evolution reaction. J. Power Sources 2016, 310, 41–46.

    Article  Google Scholar 

  18. Li, W.; Wu, Z. X.; Wang, J. X.; Elzatahry, A. A.; Zhao, D. Y. A perspective on mesoporous TiO2 materials. Chem. Mater. 2014, 26, 287–298.

    Article  Google Scholar 

  19. Jeong, I.; Jo, C.; Anthonysamy, A.; Kim, J. M.; Kang, E.; Hwang, J.; Ramasamy, E.; Rhee, S. W.; Kim, J. K.; Ha, K. S. et al. Ordered mesoporous tungsten suboxide counter electrode for highly efficient iodine-free electrolyte-based dye-sensitized solar cells. ChemSusChem 2013, 6, 299–307.

    Article  Google Scholar 

  20. Yu, L.; Wu, H. B.; Lou, X. W. Self-templated formation of hollow structures for electrochemical energy applications. Acc. Chem. Res. 2017, 50, 293–301.

    Article  Google Scholar 

  21. Wang, Q.; Yu, B. W.; Li, X.; Xing, L. L.; Xue, X. Y. Core-shell Co3O4/ZnCo2O4 coconut-like hollow spheres with extremely high performance as anode materials for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 425–433.

    Article  Google Scholar 

  22. Ko, Y. N.; Park, S. B.; Jung, K. Y.; Kang, Y. C. One-pot facile synthesis of ant-cave-structured metal oxide-carbon microballs by continuous process for use as anode materials in Li-ion batteries. Nano Lett. 2013, 13, 5462–5466.

    Article  Google Scholar 

  23. Son, M. Y.; Hong, Y. J.; Kang, Y. C. Superior electrochemical properties of Co3O4 yolk-shell powders with a filled core and multishells prepared by a one-pot spray pyrolysis. Chem. Commun. 2013, 49, 5678–5680.

    Article  Google Scholar 

  24. Kuai, L.; Geng, J.; Chen, C. Y.; Kan, E. J.; Liu, Y. D.; Wang, Q.; Geng, B. Y. A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem., Int. Ed. 2014, 53, 7547–7551.

    Article  Google Scholar 

  25. Wang, Q.; Geng, J.; Yuan, C.; Kuai, L.; Geng, B. Y. Mesoporous spherical Li4Ti5O12/TiO2 composites as an excellent anode material for lithium-ion batteries. Electrochim. Acta 2016, 212, 41–46.

    Article  Google Scholar 

  26. Li, T.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Hu, Q. Y.; Peng, W. J. Synthesis of nanoparticles-assembled Co3O4 microspheres as anodes for Li-ion batteries by spray pyrolysis of CoCl2 solution. Electrochim. Acta 2016, 209, 456–463.

    Article  Google Scholar 

  27. Zhang, X. X.; Xie, Q. S.; Yue, G. H.; Zhang, Y.; Zhang, X. Q.; Lu, A. L.; Peng, D. L. A novel hierarchical network-like Co3O4 anode material for lithium batteries. Electrochim. Acta 2013, 111, 746–754.

    Article  Google Scholar 

  28. Hu, Y. S.; Guo, Y. G.; Sigle, W.; Hore, S.; Balaya, P.; Maier, J. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nat. Mater. 2006, 5, 713–717.

    Article  Google Scholar 

  29. Shin, J. Y.; Samuelis, D.; Maier, J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv. Funct. Mater. 2011, 21, 3464–3472.

    Article  Google Scholar 

  30. Feng, Y.; Yu, X. Y.; Paik, U. Formation of Co3O4 microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation. Chem. Commun. 2016, 52, 6269–6272.

    Article  Google Scholar 

  31. Su, P. P.; Liao, S. C.; Rong, F.; Wang, F. Q.; Chen, J.; Li, C.; Yang, Q. H. Enhanced lithium storage capacity of Co3O4 hexagonal nanorings derived from Co-based metal organic frameworks. J. Mater. Chem. A 2014, 2, 17408–17414.

    Article  Google Scholar 

  32. Yan, C. S.; Chen, G.; Zhou, X.; Sun, J. X.; Lv, C. D. Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 1428–1436.

    Article  Google Scholar 

  33. Fang, Y.; Lv, Y. Y.; Che, R. C.; Wu, H. Y.; Zhang, X. H.; Gu, D.; Zheng, G.. F.; Zhao, D. Y. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 2013, 135, 1524–1530.

    Article  Google Scholar 

  34. Griffith, K. J.; Forse, A. C.; Griffin, J. M.; Grey, C. P. High-rate intercalation without nanostructuring in metastable Nb2O5 bronze phases. J. Am. Chem. Soc. 2016, 138, 8888–8899.

    Article  Google Scholar 

  35. Tian, D.; Zhou, X. L.; Zhang, Y. H.; Zhou, Z.; Bu, X. H. MOF-derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries. Inorg. Chem. 2015, 54, 8159–8161.

    Article  Google Scholar 

  36. Chen, M. H.; Xia, X. H.; Yin, J. H.; Chen, Q. G. Construction of Co3O4 nanotubes as high-performance anode material for lithium ion batteries. Electrochim. Acta 2015, 160, 15–21.

    Article  Google Scholar 

  37. Wang, D. L.; Yu, Y. C.; He, H.; Wang, J.; Zhou, W. D.; Abruña, H. D. Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 2015, 9, 1775–1781.

    Article  Google Scholar 

  38. Huang, G. Y.; Xu, S. M.; Lu, S. S.; Li, L. Y.; Sun, H. Y. Porous polyhedral and fusiform Co3O4 anode materials for high-performance lithium-ion batteries. Electrochim. Acta 2014, 135, 420–427.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21471006, 21271009), the Programs for Science and Technology Development of Anhui Province (No. 1501021019), the Recruitment Program for Leading Talent Team of Anhui Province, the Program for Innovative Research Team of Anhui Education Committee, and the Research Foundation for Science and Technology Leaders and Candidates of Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyou Geng.

Electronic supplementary material

12274_2017_1766_MOESM1_ESM.pdf

Gas template-assisted spray pyrolysis: A facile strategy to produce porous hollow Co3O4 with tunable porosity for high-performance lithium-ion battery anode materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Huang, K., Li, M. et al. Gas template-assisted spray pyrolysis: A facile strategy to produce porous hollow Co3O4 with tunable porosity for high-performance lithium-ion battery anode materials. Nano Res. 11, 1490–1499 (2018). https://doi.org/10.1007/s12274-017-1766-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1766-1

Keywords

Navigation