Skip to main content
Log in

Optical emission spectroscopy diagnosis of energetic Ar ions in synthesis of SiC polytypes by DC arc discharge plasma

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silicon carbides are basilic ceramics with proper bandgaps (2.4–3.3 eV) and unique optical properties. SiC@C monocrystal nanocapsules with different morphologies, sizes, and crystal types were synthesized via the fast and facile direct current (DC) arc discharge plasma method. The influence of Ar atmosphere on the formation of nanocrystal SiC polytypes was investigated by optical emission spectroscopy (OES) diagnoses on the arc discharge plasma. Boltzmann’s plot was used to estimate the temperatures of plasma containing different Ar concentrations as 10,582 K (in 2 × 104 Pa of Ar partial pressure) and 14,523 K (in 4 × 104 Pa of Ar partial pressure). It was found that higher energy state of plasma favors the ionization of carbon atoms and promotes the formation of α-SiC, while β-SiC is generally coexistent. Heat-treatment in air was applied to remove the carbon species in as-prepared SiC nanopowders. Thus, the intrinsic characters of SiC polytypes reappeared in the ultraviolet–visible (UV–vis) light absorbance. It was experimentally revealed that the direct bandgap of SiC is 5.72 eV, the indirect bandgap of β-SiC (3C) is 3.13 eV, and the indirect bandgap of α-SiC (6H) is 3.32 eV; visible quantum confinement effect is predicted for these polytypic SiC nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, R. B.; Zhou, K.; Yue, C. Y.; Wei, J.; Pan, Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 2015, 72, 1–60.

    Article  Google Scholar 

  2. Ou, Y.; Zhu, X. L.; Jokubavicius, V.; Yakimova, R.; Mortensen, N. A.; Syväjärvi, M.; Xiao, S. S.; Ou, H. Y. Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures. Sci. Rep. 2014, 4, 4662.

    Article  Google Scholar 

  3. Minella, A. B.; Pohl, D.; Täschner, C.; Erni, R.; Ummethala, R.; Rümmeli, M. H.; Schultz, L.; Rellinghaus, B. Silicon carbide embedded in carbon nanofibres: Structure and band gap determination. Phys. Chem. Chem. Phys. 2014, 16, 24437–24442.

    Article  Google Scholar 

  4. Lin, L. W. Synthesis and optical property of large-scale centimetres-long silicon carbide nanowires by catalyst-free CVD route under superatmospheric pressure conditions. Nanoscale 2011, 3, 1582–1591.

    Article  Google Scholar 

  5. Wang, Y. T.; Liu, Y.; Wendler, E.; Hübner, R.; Anwand, W.; Wang, G.; Chen, X. L.; Tong, W.; Yang, Z. R.; Munnik, F. et al. Defect-induced magnetism in SiC: Interplay between ferromagnetism and paramagnetism. Phys. Rev. B 2015, 92, 174409.

    Article  Google Scholar 

  6. Xie, S.; Guo, X. N.; Jin, G. Q.; Tong, X. L.; Wang, Y. Y.; Guo, X. Y. In situ grafted carbon on sawtooth-like SiC supported Ni for high-performance supercapacitor electrodes. Chem. Commun. 2014, 50, 228–230.

    Article  Google Scholar 

  7. Chen, K.; Huang, Z. H.; Huang, J. T.; Fang, M. H.; Liu, Y. G.; Ji, H. P.; Yin, L. Synthesis of SiC nanowires by thermal evaporation method without catalyst assistant. Ceram. Int. 2013, 39, 1957–1962.

    Article  Google Scholar 

  8. Tabata, A.; Imori, Y. Current density–voltage and admittance characteristics of hydrogenated nanocrystalline cubic SiC/ crystalline Si heterojunction diodes prepared with varying H2 gas flow rates. Solid-State Electron. 2015, 104, 33–38.

    Article  Google Scholar 

  9. Wang, B.; Wang, Y. D.; Lei, Y. P.; Wu, N.; Gou, Y. Z.; Han, C.; Xie, S.; Fang, D. Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. Nano Res. 2016, 9, 886–898.

    Article  Google Scholar 

  10. Wu, R. B.; Zhou, K.; Yang, Z. H.; Qian, X. K.; Wei, J.; Liu, L.; Huang, Y. Z.; Kong, L. B.; Wang, L. Y. Moltensalt- mediated synthesis of SiC nanowires for microwave absorption applications. CrystEngComm 2013, 15, 570–576.

    Article  Google Scholar 

  11. Wu, R. B.; Zhou, K.; Qian, X. K.; Wei, J.; Tao, Y.; Sow, C. H.; Wang, L. Y.; Huang, Y. Z. Well-aligned SiC nanoneedle arrays for excellent field emitters. Mater. Lett. 2013, 91, 220–223.

    Article  Google Scholar 

  12. Wu, R. B.; Zhou, K.; Wei, J.; Huang, Y. Z.; Su, F.; Chen, J. J.; Wang, L. Y. Growth of tapered SiC nanowires on flexible carbon fabric: toward field emission applications. J. Phys. Chem. C 2012, 116, 12940–12945.

    Article  Google Scholar 

  13. Botsoa, J.; Lysenko, V.; Géloën, A.; Marty, O.; Bluet, J. M.; Guillot, G. Application of 3C-SiC quantum dots for living cell imaging. Appl. Phys. Lett. 2008, 92, 173902.

    Article  Google Scholar 

  14. Wang, Z. J.; Wei, M. M.; Jin, L.; Ning, Y. X.; Yu, L.; Fu, Q.; Bao, X. H. Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia. Nano Res. 2013, 6, 399–408.

    Article  Google Scholar 

  15. Li, Z. J.; Zhao, J.; Zhang, M.; Xia, J. Y.; Meng, A. SiC nanowires with thickness-controlled SiO2 shells: Fabrication, mechanism, reaction kinetics and photoluminescence properties. Nano Res. 2014, 7, 462–472.

    Article  Google Scholar 

  16. Ortiz, A. L.; Sánchez-Bajo, F.; Cumbrera, F. L.; Guiberteau, F. The prolific polytypism of silicon carbide. J. Appl. Cryst. 2013, 46, 242–247.

    Article  Google Scholar 

  17. Zywietz, A.; Karch, K.; Bechstedt, F. Influence of polytypism on thermal properties of silicon carbide. Phys. Rev. B, 1996, 54, 1791–1798.

    Article  Google Scholar 

  18. Krishna, P.; Verma, A. R. Crystal-polymorphism in one dimension. Phys. Status Solidi (B), 1966, 17, 437–477.

    Article  Google Scholar 

  19. Hofmann, M.; Zywietz, A.; Karch, K.; Bechstedt, F. Lattice dynamics of SiC polytypes within the bond-charge model. Phys. Rev. B 1994, 50, 13401–13411.

    Article  Google Scholar 

  20. Maboudian, R.; Carraro, C.; Senesky, D. G.; Roper, C. S. Advances in silicon carbide science and technology at the micro- and nanoscales. J. Vac. Sci. Technol. A 2013, 31, 050805.

    Article  Google Scholar 

  21. Persson, C.; Lindefelt, U. Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap. Phys. Rev. B 1996, 54, 10257–10260.

    Article  Google Scholar 

  22. Okojie, R. S.; Xhang, M.; Pirouz, P.; Tumakha, S.; Jessen, G.; Brillson, L. J. Observation of 4H-SiC to 3C-SiC polytypic transformation during oxidation. Appl. Phys. Lett. 2001, 79, 3056–3058.

    Article  Google Scholar 

  23. Durandurdu, M. Pressure-induced phase transition of SiC. J. Phys.-Condes. Matter 2004, 16, 4411–4417.

    Article  Google Scholar 

  24. Hong, M. H.; Samant, A. V.; Pirouz, P. Stacking fault energy of 6H-SiC and 4H-SiC single crystals. Philos. Mag. A 2009, 80, 919–935.

    Article  Google Scholar 

  25. Sugiyama, S.; Togaya, M. Phase relationship between 3C- and 6H-silicon carbide at high pressure and high temperature. J. Am. Ceram. Soc. 2001, 84, 3013–3016.

    Article  Google Scholar 

  26. Okojie, R. S.; Holzheu, T.; Huang, X. R.; Dudley, M. X-ray diffraction measurement of doping induced lattice mismatch in n-type 4H-SiC epilayers grown on p-type substrates. Appl. Phys. Lett. 2003, 83, 1971–1973.

    Article  Google Scholar 

  27. Guo, X. X.; Dai, D. J.; Fan, B. L.; Fan, J. Y. Experimental evidence of α → β phase transformation in SiC quantum dots and their size-dependent luminescence. Appl. Phys. Lett. 2014, 105, 193110.

    Article  Google Scholar 

  28. Li, P., Xu, L. Q.; Qian, Y. T. Selective synthesis of 3C-SiC hollow nanospheres and nanowires. Cryst. Growth Des. 2008, 8, 2431–2436.

    Article  Google Scholar 

  29. Dasog, M.; Smith, L. F.; Purkait, T. K.; Veinot, J. G. C. Low temperature synthesis of silicon carbide nanomaterials using a solid-state method. Chem. Commun. 2013, 49, 7004–7006.

    Article  Google Scholar 

  30. Fan, J. Y.; Li, H. X.; Wang, J.; Xiao, M. Fabrication and photoluminescence of SiC quantum dots stemming from 3C, 6H, and 4H polytypes of bulk SiC. Appl. Phys. Lett. 2012, 101, 131906.

    Article  Google Scholar 

  31. Yushin, G. N.; Cambaz, Z. G.; Gogotsi, Y.; Vyshnyakova, K. L.; Pereselentseva, L. N. Carbothermal synthesis of α-SiC micro-ribbons. J. Am. Ceram. Soc. 2007, 91, 83–87.

    Article  Google Scholar 

  32. Bechelany, M.; Brioude, A.; Stadelmann, P.; Ferro, G.; Cornu, D.; Miele, P. Very long SiC-based coaxial nanocables with tunable chemical composition. Adv. Funct. Mater. 2007, 17, 3251–3257.

    Article  Google Scholar 

  33. Dong, X. L.; Zhang, Z. D.; Zhao, X. G.; Chuang, Y. C. The preparation and characterization of ultrafine Fe-Ni particles. J. Mater. Res. 1999, 14, 398–406.

    Article  Google Scholar 

  34. Zhang, X. F.; Guo, J. J.; Guan, P. F.; Liu, C. J.; Huang, H.; Xue, F. H.; Dong, X. L.; Pennycook, S. J.; Chisholm, M. F. Catalytically active single-atom niobium in graphitic layers. Nat. Commun. 2013, 4, 1924.

    Article  Google Scholar 

  35. Yu, J. Y.; Gao, J.; Xue, F. H.; Yu, X. H.; Yu, H. T.; Dong, X. L.; Huang, H.; Ding, A.; Quan, X.; Cao, G. Z. Formation mechanism and optical characterization of polymorphic silicon nanostructures by DC arc-discharge. RSC Adv. 2015, 5, 68714–68721.

    Article  Google Scholar 

  36. Gao, J.; Yu, J. Y.; Zhou, L.; Muhammad, J.; Dong, X. L.; Wang, Y. N.; Yu, H. T.; Quan, X.; Li, S. J.; Jung, Y. Interface evolution in the platelet-like SiC@C and SiC@SiO2 monocrystal nanocapsules. Nano Res. 2017, 10, 2644–2656.

    Article  Google Scholar 

  37. Zhou, X. F.; Li, X.; Gao, Q. Z.; Yuan, J. L.; Wen, J. Q.; Fang, Y. P.; Liu, W.; Zhang, S. S.; Liu, Y. J. Metal-free carbon nanotube–SiC nanowire heterostructures with enhanced photocatalytic H2 evolution under visible light irradiation. Catal. Sci. Technol. 2015, 5, 2798–2806.

    Article  Google Scholar 

  38. Kondo, T.; Okada, N.; Yamaguchi, Y.; Urai, J.; Aikawa, T.; Yuasa, M. Boron-doped nanodiamond powder prepared by solid-state diffusion method. Chem. Lett. 2015, 44, 627–629.

    Article  Google Scholar 

  39. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

    Article  Google Scholar 

  40. Nichols, J. A.; Saito, H.; Deck, C.; Bandaru, P. R. Artificial introduction of defects into vertically aligned multiwalled carbon nanotube ensembles: Application to electrochemical sensors. J. Appl. Phys. 2007, 102, 064306.

    Article  Google Scholar 

  41. Vallerot, J. M.; Bourrat, X.; Mouchon, A.; Chollon, G. Quantitative structural and textural assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques. Carbon 2006, 44, 1833–1844.

    Article  Google Scholar 

  42. Smovzh, D. V.; Kostogrud, I. A.; Sakhapov, S. Z.; Zaikovskii, A. V.; Novopashin, S. A. The synthesis of few-layered graphene by the arc discharge sputtering of a Si-C electrode. Carbon 2017, 112, 97–102.

    Article  Google Scholar 

  43. Ke, W. W.; Feng, X.; Huang, Y. D. The effect of Si-nanocrystal size distribution on Raman spectrum. J. Appl. Phys. 2011, 109, 083526.

    Article  Google Scholar 

  44. Bechelany, M.; Brioude, A.; Cornu, D.; Ferro, G.; Miele, P. A Raman spectroscopy study of individual SiC nanowires. Adv. Funct. Mater. 2007, 17, 939–943.

    Article  Google Scholar 

  45. Rehman, N. U.; Khan, F. U.; Khattak, N. A. D.; Zakaullah, M. Effect of neon mixing on vibrational temperature of molecular nitrogen plasma generated at 13.56 MHz. Phys. Lett. A 2008, 372, 1462–1468.

    Article  Google Scholar 

  46. Cao, T. F.; Zhang, H. B.; Yan, B. H.; Lu, W.; Cheng, Y. Optical emission spectroscopy diagnostic and thermodynamic analysis of thermal plasma enhanced nanocrystalline silicon CVD process. RSC Adv. 2014, 4, 15131–15137.

    Article  Google Scholar 

  47. Iordanova, S.; Koleva, I. Optical emission spectroscopy diagnostics of inductively-driven plasmas in argon gas at low pressures. Spectroc. Acta Pt. B-Atom. Spectr. 2007, 62, 344–356.

    Article  Google Scholar 

  48. Sugimoto, I.; Nakano, S.; Kuwano, H. Enhanced saturation of sputtered amorphous SiN film frameworks using He- and Ne-Penning effects. J. Appl. Phys. 1994, 75, 7710–7717.

    Article  Google Scholar 

  49. Naveed, M. A.; Qayyum, A.; Ali, S.; Zakaullah, M. Effects of helium gas mixing on the production of active species in nitrogen plasma. Phys. Lett. A 2006, 359, 499–503.

    Article  Google Scholar 

  50. Aragón, C.; Aguilera, J. A. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods. Spectroc. Acta Pt. B-Atom. Spectr. 2008, 63, 893–916.

    Article  Google Scholar 

  51. Qayyum, A.; Zeb, S.; Naveed, M. A.; Rehman, N. U.; Ghauri, S. A.; Zakaullah, M. Optical emission spectroscopy of Ar–N2 mixture plasma. J. Quant. Spectrosc. Radiat. Transf. 2007, 107, 361–371.

    Article  Google Scholar 

  52. Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P. Atmospheric pressure plasmas: A review. Spectroc. Acta Pt. B-Atom. Spectr. 2006, 61, 2–30.

    Article  Google Scholar 

  53. Logothetidis, S. Optical and electronic properties of amorphous carbon materials. Diam. Relat. Mat. 2003, 12, 141–150.

    Article  Google Scholar 

  54. Dovbeshko, G. I.; Romanyuk, V. R.; Pidgirnyi, D. V.; Cherepanov, V. V.; Andreev, E. O.; Levin, V. M.; Kuzhir, P. P.; Kaplas, T.; Svirko, Y. P. Optical properties of pyrolytic carbon films versus graphite and graphene. Nanoscale Res. Lett. 2015, 10, 234.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundations of China (Nos. 51331006 and 51271044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinglong Dong or Xie Quan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Zhou, L., Liang, J. et al. Optical emission spectroscopy diagnosis of energetic Ar ions in synthesis of SiC polytypes by DC arc discharge plasma. Nano Res. 11, 1470–1481 (2018). https://doi.org/10.1007/s12274-017-1764-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1764-3

Keywords

Navigation