Two-photon lithography for 3D magnetic nanostructure fabrication


Ferromagnetic materials have been utilized as recording media in data storage devices for many decades. The confinement of a material to a two-dimensional plane is a significant bottleneck in achieving ultra-high recording densities, and this has led to the proposition of three-dimensional (3D) racetrack memories that utilize domain wall propagation along the nanowires. However, the fabrication of 3D magnetic nanostructures of complex geometries is highly challenging and is not easily achieved with standard lithography techniques. Here, we demonstrate a new approach to construct 3D magnetic nanostructures of complex geometries using a combination of two-photon lithography and electrochemical deposition. The magnetic properties are found to be intimately related to the 3D geometry of the structure, and magnetic imaging experiments provide evidence of domain wall pinning at the 3D nanostructured junction.


  1. [1]

    Tallents, G.; Wagenaars, E.; Pert, G. Optical lithography: Lithography at EUV wavelengths. Nat. Photonics 2010, 4, 809–811.

    Article  Google Scholar 

  2. [2]

    Parkin, S. S. P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194.

    Article  Google Scholar 

  3. [3]

    Da Col, S.; Jamet, S.; Rougemaille, N.; Locatelli, A.; Mentes, T. O.; Burgos, B. S.; Afid, R.; Darques, M.; Cagnon, L.; Toussaint, J. C. et al. Observation of Bloch-point domain walls in cylindrical magnetic nanowires. Phys. Rev. B 2014, 89, 180405.

    Article  Google Scholar 

  4. [4]

    Pylypovskyi, O. V.; Sheka, D. D.; Kravchuk, V. P.; Yershov, K. V.; Makarov, D.; Gaididei, Y. Rashba torque driven domain wall motion in magnetic helices. Sci. Rep. 2016, 6, 23316.

    Article  Google Scholar 

  5. [5]

    Shishkin, I. S.; Mistonov, A. A.; Dubitskiy, I. S.; Grigoryeva, N. A.; Menzel, D.; Grigoriev, S. V. Nonlinear geometric scaling of coercivity in a three-dimensional nanoscale analog of spin ice. Phys. Rev. B 2016, 94, 064424.

    Article  Google Scholar 

  6. [6]

    Bicelli, L. P.; Bozzini, B.; Mele, C.; D’Urzo, L. A review of nanostructural aspects of metal electrodeposition. Int. J. Electrochem. Sci. 2008, 3, 356–408.

    Google Scholar 

  7. [7]

    Ivanov, Y. P.; Chuvilin, A.; Vivas, L. G.; Kosel, J.; Chubykalo-Fesenko, O.; Vázquez, M. Single crystalline cylindrical nanowires—Toward dense 3D arrays of magnetic vortices. Sci. Rep. 2016, 6, 23844.

    Article  Google Scholar 

  8. [8]

    da Câmara Santa Clara Gomes, T.; De La Torre Medina, J.; Lemaitre, M.; Piraux, L. Magnetic and magnetoresistive properties of 3D interconnected NiCo nanowire networks. Nanoscale Res. Lett. 2016, 11, 466.

    Article  Google Scholar 

  9. [9]

    De Teresa, J. M.; Fernández-Pacheco, A.; Córdoba, R.; Serrano-Ramón, L.; Sangiao, S.; Ibarra, M. R. Review of magnetic nanostructures grown by focused electron beam induced deposition (FEBID). J. Phys. D Appl. Phys. 2016, 49, 243003.

    Article  Google Scholar 

  10. [10]

    Fernández-Pacheco, A.; Serrano-Ramón, L.; Michalik, J. M.; Ibarra, M. R.; De Teresa, J. M.; O’Brien, L.; Petit, D.; Lee, J.; Cowburn, R. P. Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci. Rep. 2013, 3, 1492.

    Article  Google Scholar 

  11. [11]

    Bisoyi, H. K.; Li, Q. Light-directing chiral liquid crystal nanostructures: From 1D to 3D. Acc. Chem. Res. 2014, 47, 3184–3195.

    Article  Google Scholar 

  12. [12]

    Wang, L.; Li, Q. Stimuli-directing self-organized 3D liquidcrystalline nanostructures: From materials design to photonic applications. Adv. Funct. Mater. 2016, 26, 10–28.

    Article  Google Scholar 

  13. [13]

    Xue, C. M.; Gao, M.; Xue, Y. H.; Zhu, L.; Dai, L. M.; Urbas, A.; Li, Q. Building 3D layer-by-layer graphene–gold nanoparticle hybrid architecture with tunable interlayer distance. J. Phys. Chem. C 2014, 118, 15332–15338.

    Article  Google Scholar 

  14. [14]

    Wang, L. B.; Li, F. Y.; Kuang, M. N.; Gao, M.; Wang, J. X.; Huang, Y.; Jiang, L.; Song, Y. L. Interface manipulation for printing three-dimensional microstructures under magnetic guiding. Small 2015, 11, 1900–1904.

    Article  Google Scholar 

  15. [15]

    Wei, L.; Dong, Z. C.; Kuang, M. X.; Li, Y. N.; Li, F. Y.; Jiang, L.; Song, Y. L. Printing patterned fine 3D structures by manipulating the three phase contact line. Adv. Funct. Mater. 2015, 25, 2237–2242.

    Article  Google Scholar 

  16. [16]

    Sun, H.-B.; Kawata, S. Two-photon photopolymerization and 3D lithographic microfabrication. In NMR·3D Analysis Photopolymerization. Advances in Polymer Science; Fatkullin, N.; Ikehara, T.; Jinnai, H.; Kawata, S.; Kimmich, R.; Nishi, T.; Nishikawa, Y.; Sun, H.-B., Eds.; Springer: Berlin Heidelberg, 2004; pp169–273.

    Google Scholar 

  17. [17]

    Cao, Y. Y.; Takeyasu, N.; Tanaka, T.; Duan, X. M.; Kawata, S. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 2009, 5, 1144–1148.

    Google Scholar 

  18. [18]

    Cao, Z. H.; Zheng, M. L.; Dong, X. Z.; Jin, F.; Zhao, Z. S.; Duan, X. M. Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing. Appl. Phys. Lett. 2013, 102, 201108.

    Article  Google Scholar 

  19. [19]

    MicroChemicals. Development of photoresists [Online]. (accessed Mar 14, 2017).

    Google Scholar 

  20. [20]

    Mehdizadeh, S.; Dukovic, J. O.; Andricacos, P. C.; Romankiw, L. T.; Cheh, H. Y. The influence of lithographic patterning on current distribution: A model for microfabrication by electrodeposition. J. Electrochem. Soc. 1992, 139, 78–91.

    Article  Google Scholar 

  21. [21]

    Klar, T. A.; Wollhofen, R.; Jacak, J. Sub-Abbe resolution: from STED microscopy to STED lithography. Phys. Scr. 2014, 2014, 014049.

    Article  Google Scholar 

  22. [22]

    Ivanov, Y. P.; Vivas, L. G.; Asenjo, A.; Chuvilin, A.; Chubykalo-Fesenko, O.; Vázquez, M. Magnetic structure of a single-crystal hcp electrodeposited cobalt nanowire. Europhys. Lett. 2013, 102, 17009.

    Article  Google Scholar 

  23. [23]

    Anders, S.; Padmore, H. A.; Duarte, R. M.; Renner, T.; Stammler, T.; Scholl, A.; Scheinfein, M. R.; Stöhr, J.; Séve, L.; Sinkovic, B. Photoemission electron microscope for the study of magnetic materials. Rev. Sci. Instrum. 1999, 70, 3973–3981.

    Article  Google Scholar 

  24. [24]

    De Graef, M. Recent progress in Lorentz transmission electron microscopy. ESOMAT 2009, 01002.

    Google Scholar 

  25. [25]

    Zvezdin, A. K.; Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials; CRC Press: Boca Raton, 1997.

    Google Scholar 

  26. [26]

    Pirota, K. R.; Béron, F.; Zanchet, D.; Rocha, T. C. R.; Navas, D.; Torrejón, J.; Vazquez, M.; Knobel, M. Magnetic and structural properties of fcc/hcp bi-crystalline multilayer Co nanowire arrays prepared by controlled electroplating. J. Appl. Phys. 2011, 109, 083919.

    Article  Google Scholar 

  27. [27]

    Henry, Y.; Ounadjela, K.; Piraux, L.; Dubois, S.; George, J. M.; Duvail, J. L. Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. Eur. Phys. J. B 2001, 20, 35–54.

    Article  Google Scholar 

  28. [28]

    Xu, Y. B.; Vaz, C. A. F.; Hirohata, A.; Yao, C. C.; Lee, W. Y.; Bland, J. A. C.; Rousseaux, F.; Cambril, E.; Launois, H. Domain wall trapping probed by magnetoresistance and magnetic force microscopy in submicron ferromagnetic wire structures. J. Appl. Phys. 1999, 85, 6178–6180.

    Article  Google Scholar 

  29. [29]

    Mueller, P.; Thiel, M.; Wegener, M. 3D direct laser writing using a 405 nm diode laser. Opt. Lett. 2014, 39, 6847–6850.

    Article  Google Scholar 

  30. [30]

    Allenspach, R. Spin-polarized scanning electron microscopy. IBM J. Res. Dev. 2000, 44, 553–570.

    Article  Google Scholar 

Download references


S. L. gratefully acknowledges funding from EPSRC (Nos. EP/L006669/1, EP/P510750/1, and EP/P511122/1). JGR and Y-LDH acknowledge financial support from the ERC advanced grant 247462 QUOWSS and EPSRC grant EP/M009033/1. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7-People-2012-ITN] under grant agreement 316657 (SpinIcur). Information on the data that underpins the research reported here, including how to access them, can be found in the Cardiff University data catalogue at 10.17035/d.2017.0031438135.

Author information



Corresponding author

Correspondence to Sam Ladak.

Electronic supplementary material

Rights and permissions

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Williams, G., Hunt, M., Boehm, B. et al. Two-photon lithography for 3D magnetic nanostructure fabrication. Nano Res. 11, 845–854 (2018).

Download citation


  • magnetism
  • spintronics
  • nanomagnetism
  • three-dimensional (3D) lithography