Skip to main content
Log in

Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Trivalent titanium doped titania/carbon (TiO2–x/C) composite microspheres have been prepared by a facile aerosol method (ultrasonic spray pyrolysis) using titanium (IV) bis(ammonium lactato)dihydroxide (TiBALDH) as the sole precursor. The obtained TiO2–x/C microspheres have particle sizes in the range of 400–1,000 nm. When evaluated as anode material for sodium-ion batteries (SIBs), they provide a high reversible capacity of 286 mA·h·g−1 with good cycling performance. A capacity of 249 mA·h·g−1 can be achieved after 180 cycles at 50 mA·g−1, which is more than three times higher than that of white TiO2 microspheres (77 mA·h·g−1). The superior sodium storage performance of these TiO2–x/C composite microspheres can be attributed to the simultaneous introduction of Ti3+ and oxygen vacancies, ultrafine grain size, as well as the conductive carbon matrix. This study provides a facile and effective approach for the production of TiO2–x/C nanocomposites with superior sodium storage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Correction: Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 3255.

    Article  Google Scholar 

  2. Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

    Article  Google Scholar 

  3. Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

    Article  Google Scholar 

  4. Li, L., Sun, X. A., Zhang, J. J.; Lu, J. Electrochemical energy storage and conversion at EEST2016. ACS Energy Lett. 2017, 2, 151–153.

    Article  Google Scholar 

  5. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

    Article  Google Scholar 

  6. Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867.

    Article  Google Scholar 

  7. Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.

    Article  Google Scholar 

  8. Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton, M.; Mitlin, D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014, 8, 7115–7129.

    Article  Google Scholar 

  9. Xiao, L. F.; Cao, Y. L.; Henderson, W. A.; Sushko, M. L.; Shao, Y. Y.; Xiao, J.; Wang, W.; Engelhard, M. H.; Nie, Z. M.; Liu, J. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 2016, 19, 279–288.

    Article  Google Scholar 

  10. Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.

    Article  Google Scholar 

  11. Zhu, Y. J.; Han, X. G.; Xu, Y. H; Liu, Y. H.; Zheng, S. Y.; Xu, K.; Hu, L. B.; Wang, C. S. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 2013, 7, 6378–6386.

    Article  Google Scholar 

  12. Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922.

    Google Scholar 

  13. Wang, J. W.; Liu, X. H.; Mao, S. X.; Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012, 12, 5897–5902.

    Article  Google Scholar 

  14. Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.

    Article  Google Scholar 

  15. Hu, W. Y.; Zhou, W.; Zhang, K. F.; Zhang, X. C.; Wang, L.; Jiang, B. J.; Tian, G. H.; Zhao, D. Y.; Fu, H. G. Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. J. Mater. Chem. A 2016, 4, 7495–7502.

    Article  Google Scholar 

  16. Liu, Y.; Che, R. C.; Chen, G.; Fan, J. W.; Sun, Z. K.; Wu, Z. X.; Wang, M. H.; Li, B.; Wei, J.; Wei, Y. et al. Radially oriented mesoporous TiO2 microspheres with single-crystal-like anatase walls for high-efficiency optoelectronic devices. Sci. Adv. 2015, 1, e1500166.

    Article  Google Scholar 

  17. Liu, H.; Li, W.; Shen, D. K.; Zhao, D. Y.; Wang, G. X. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 2015, 137, 13161–13166.

    Article  Google Scholar 

  18. Liu, Y.; Elzatahry, A. A.; Luo, W.; Lan, K.; Zhang, P. F.; Fan, J. W.; Wei, Y.; Wang, C.; Deng, Y. H.; Zheng, G. F. et al. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy 2016, 25, 80–90.

    Article  Google Scholar 

  19. Chen, Z. H.; Belharouak, I.; Sun, Y. K.; Amine, K. Titanium-based anode materials for safe lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 959–969.

    Article  Google Scholar 

  20. Zhu, G. N.; Wang, Y. G.; Xia, Y. Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6652–6667.

    Article  Google Scholar 

  21. Guo, S. H.; Yi, J.; Sun, Y.; Zhou, H. S. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy Environ. Sci. 2016, 9, 2978–3006.

    Article  Google Scholar 

  22. Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2560–2565.

    Article  Google Scholar 

  23. Bi, Z. H.; Paranthaman, M. P.; Menchhofer, P. A.; Dehoff, R. R.; Bridges, C. A.; Chi, M. F.; Guo, B. K.; Sun, X. G.; Dai, S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J. Power Sources 2013, 222, 461–466.

    Article  Google Scholar 

  24. Usui, H.; Yoshioka, S.; Wasada, K.; Shimizu, M.; Sakaguchi, H. Nb-doped rutile TiO2: A potential anode material for Na-ion battery. ACS Appl. Mater. Interfaces 2015, 7, 6567–6573.

    Article  Google Scholar 

  25. Zhang, Y.; Foster, C. W.; Banks, C. E.; Shao, L. D.; Hou, H. S.; Zou, G. Q.; Chen, J.; Huang, Z. D.; Ji, X. B. Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv. Mater. 2016, 28, 9391–9399.

    Article  Google Scholar 

  26. Xu, Y.; Lotfabad, E. M.; Wang, H. L.; Farbod, B.; Xu, Z. W.; Kohandehghan, A.; Mitlin, D. Nanocrystallineanatase TiO2: A new anode material for rechargeable sodium ion batteries. Chem. Commun. 2013, 49, 8973–8975.

    Article  Google Scholar 

  27. Kim, K. T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y. K.; Lu, J.; Amine, K.; Myung, S. T. Anatasetitaniananorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416–422.

    Article  Google Scholar 

  28. Su, D. W.; Dou, S. X.; Wang, G. X. Anatase TiO2: Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem. Mater. 2015, 27, 6022–6029.

    Article  Google Scholar 

  29. Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.

    Article  Google Scholar 

  30. Ni, J. F.; Fu, S. D.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Selfsupported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 2016, 28, 2259–2265.

    Article  Google Scholar 

  31. Tahir, M. N.; Oschmann, B.; Buchholz, D.; Dou, X. W.; Lieberwirth, I.; Panthöfer, M.; Tremel, W.; Zentel, R.; Passerini, S. Extraordinary performance of carbon-coated anatase TiO2 as sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501489.

    Article  Google Scholar 

  32. Wu, Y.; Liu, X. W.; Yang, Z. Z.; Gu, L.; Yu, Y. Nitrogendoped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 2016, 12, 3522–3529.

    Article  Google Scholar 

  33. Dambournet, D.; Belharouak, I.; Amine, K. Tailored preparation methods of TiO2 anatase, rutile, brookite:Mechanism of formation and electrochemical properties. Chem. Mater. 2009, 22, 1173–1179.

    Article  Google Scholar 

  34. Huang, J. P.; Yuan, D. D.; Zhang, H. Z.; Cao, Y. L.; Li, G. R.; Yang, H. X.; Gao, X. P. Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries. RSC Adv. 2013, 3, 12593–12597.

    Article  Google Scholar 

  35. Dylla, A. G.; Henkelman, G.; Stevenson, K. J. Lithium insertion in nanostructured TiO2(B) architectures. Acc. Chem. Res. 2013, 46, 1104–1112.

    Article  Google Scholar 

  36. Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

    Article  Google Scholar 

  37. Chen, J.; Ding, Z. Y.; Wang, C.; Hou, H. S.; Zhang, Y.; Wang, C. W.; Zou, G. Q.; Ji, X. B. Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies. ACS Appl. Mater. Interfaces 2016, 8, 9142–9151.

    Article  Google Scholar 

  38. Zhu, Y. J.; Choi, S. H.; Fan, X. L.; Shin, J.; Ma, Z. H.; Zachariah, M. R.; Choi, J. W.; Wang, C. S. Recent progress on spray pyrolysis for high performance electrode materials in lithium and sodium rechargeable batteries. Adv. Energy Mater. 2017, 7, 1601578.

    Article  Google Scholar 

  39. Bang, J. H.; Suslick, K. S. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 2010, 22, 1039–1059.

    Article  Google Scholar 

  40. Myung, S. T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S. J.; Sun, Y. K.; Scrosati, B. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 2013, 6, 2609–2614.

    Article  Google Scholar 

  41. Oh, S. M.; Hwang, J. Y.; Yoon, C. S.; Lu, J.; Amine, K.; Belharouak, I.; Sun, Y. K. High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 11295–11301.

    Article  Google Scholar 

  42. Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

    Article  Google Scholar 

  43. Wang, C.; Wang, F. X.; Zhao, Y. J.; Li, Y. H.; Yue, Q.; Liu, Y. P.; Liu, Y.; Elzatahry, A. A.; Al-Enizi, A.; Wu, Y. P. et al. Hollow TiO2–x porous microspheres composed of wellcrystalline nanocrystals for high-performance lithium-ion batteries. Nano Res. 2016, 9, 165–173.

    Article  Google Scholar 

  44. Sinhamahapatra, A.; Jeon, J. P.; Yu, J. S. A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy Environ. Sci. 2015, 8, 3539–3544.

    Article  Google Scholar 

  45. Wang, Z.; Yang, C. Y.; Lin, T. Q.; Yin, H.; Chen, P.; Wan, D. Y.; Xu, F. F.; Huang, F. Q.; Lin, J. H.; Xie, X. M. et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 2013, 6, 3007–3014.

    Article  Google Scholar 

  46. Chen, J.; Song, W. X.; Hou, H. S.; Zhang, Y.; Jing, M. J.; Jia, X. N.; Ji, X. B. Ti3+self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 6793–6801.

    Article  Google Scholar 

  47. Xiong, Y.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Graphene-supported TiO2 nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries. J. Mater. Chem. A 2016, 4, 11351–11356.

    Article  Google Scholar 

  48. Xiong, Y.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Electrospun TiO2/C nanofibers as a high-capacity and cyclestable anode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 16684–16689.

    Article  Google Scholar 

  49. Zhang, Y.; Pu, X. L.; Yang, Y. C.; Zhu, Y. R.; Hou, H. S.; Jing, M. J.; Yang, X. M.; Chen, J.; Ji, X. B. An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage. Phys. Chem. Chem. Phys. 2015, 17, 15764–15770.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0202603), the National Basic Research Program of China (No. 2013CB934103), the Programme of Introducing Talents of Discipline to Universities (No. B17034), the National Natural Science Foundation of China (Nos. 51521001, 21673171, 51502226), the National Natural Science Fund for Distinguished Young Scholars (No. 51425204), China postdoctoral Science Foundation (No. 2016M592401) and the Fundamental Research Funds for the Central Universities (WUT: 2016III001, 2016III002, 2017III009, 2017III008), Prof. Liqiang Mai gratefully acknowledged financial support from China Scholarship Council (No. 201606955096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Zhou or Liqiang Mai.

Electronic supplementary material

12274_2017_1675_MOESM1_ESM.pdf

Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, D., Yu, Q., Xu, C. et al. Aerosol synthesis of trivalent titanium doped titania/carbon composite microspheres with superior sodium storage performance. Nano Res. 10, 4351–4359 (2017). https://doi.org/10.1007/s12274-017-1675-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1675-3

Keywords

Navigation