Skip to main content
Log in

Design of dual metal ions/dual amino acids integrated photoluminescent logic gate by high-molecular weight protein-localized Au nanoclusters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Proteins are excellent templates and stabilizers for Au nanoclusters (NCs) because of their abundant thiol groups and unique internal environments. However, high-molecular weight (MW) proteins with special quaternary structures are rarely reported as such templates. Considering that proteins may afford different spatial configurations as templates for Au NCs, we focused on alkaline phosphatase, catalase, and fibrinogen (MW range from 150 to 340 kDa) as direct templates for synthesizing Au NCs. We demonstrated that both Cu2+ and Hg2+ could induce photoluminescence (PL) quenching of these Au NCs, while their binding mechanisms were different. Therefore, significant PL recovery by amino acids, e.g., histidine and cysteine, was observed for Cu2+-treated Au NCs, but not Hg2+-treated Au NCs, allowing for selective detection of Hg2+ by using histidine as a masking agent. The detection ranges were 0.06–2.0 μM for Hg2+ and 0.04–5.0 μM for Cu2+, with low limits of detection of 0.02 and 0.01 μM, respectively. The PL change showed opposite tendency for histidine and cysteine at higher concentrations, resulting in different PL outputs. Using dual metal ion and dual amino acid combinations, an integrated PL logic gate was fabricated. This work improves the understanding of the PL mechanisms of complicated protein-localized Au NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yau, S. H.; Varnavski, O.; Goodson, T. An ultrafast look at Au nanoclusters. Acc. Chem. Res. 2013, 46, 1506–1516.

    Article  Google Scholar 

  2. Palmal, S.; Jana, N. R. Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014, 6, 102–110.

    Article  Google Scholar 

  3. Sarparast, M.; Noori, A.; Ilkhani, H.; Bathaie, S. Z.; El-Kady, M. F.; Wang, L. J.; Pham, H.; Marsh, K. L.; Kaner, R. B.; Mousavi, M. F. Cadmium nanoclusters in a protein matrix: Synthesis, characterization, and application in targeted drug delivery and cellular imaging. Nano Res. 2016, 9, 3229–3246.

    Article  Google Scholar 

  4. Yuan, X.; Goswami, N.; Mathews, I.; Yu, Y.; Xie, J. P. Enhancing stability through ligand-shell engineering: A case study with Au25(SR)18 nanoclusters. Nano Res. 2015, 8, 3488–3495.

    Article  Google Scholar 

  5. Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

    Article  Google Scholar 

  6. Baksi, A.; Xavier, P. L.; Chaudhari, K.; Goswami, N.; Pal, S. K.; Pradeep, T. Protein-encapsulated gold cluster aggregates: The case of lysozyme. Nanoscale 2013, 5, 2009–2016.

    Article  Google Scholar 

  7. Chen, T.-H.; Tseng, W.-L. (Lysozyme type VI)-stabilized Au8 clusters: Synthesis mechanism and application for sensing of glutathione in a single drop of blood. Small 2012, 8, 1912–1919.

    Article  Google Scholar 

  8. Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R. pHdependent synthesis of pepsin-mediated gold nanoclusters with blue green and red fluorescent emission. Adv. Funct. Mater. 2011, 21, 3508–3515.

    Article  Google Scholar 

  9. Zou, L. H.; Qi, W.; Huang, R. L.; Su, R. X.; Wang, M. F.; He, Z. M. Green synthesis of a gold nanoparticle-nanocluster composite nanostructures using trypsin as linking and reducing agents. ACS SustainableChem. Eng. 2013, 1, 1398–1404.

    Article  Google Scholar 

  10. Shamsipur, M.; Molaabasi, F.; Shanehsaz, M.; Moosavi-Movahedi, A. A. Novel blue-emitting gold nanoclusters confined in human hemoglobin, and their use as fluorescent probes for copper(II) and histidine. Microchim. Acta 2015, 182, 1131–1141.

    Article  Google Scholar 

  11. Selvaprakash, K.; Chen, Y. C. Using protein-encapsulated gold nanoclusters as photoluminescent sensing probes for biomolecules. Biosens. Bioelectron. 2014, 61, 88–94.

    Article  Google Scholar 

  12. Zhang, P.; Lan, J.; Wang, Y.; Xiong, Z. H.; Huang, C. Z. Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters. Biomaterials 2015, 36, 26–32.

    Article  Google Scholar 

  13. Russell, B. A.; Kubiak-Ossowska, K.; Mulheran, P. A.; Birch, D. J. S.; Chen, Y. Locating the nucleation sites for protein encapsulated gold nanoclusters: A molecular dynamics and fluorescence study. Phys. Chem. Chem. Phys. 2015, 17, 21935–21941.

    Article  Google Scholar 

  14. Zhang, D. Y.; Chen, Z.; Omar, H.; Deng, L.; Khashab, N. M. Colorimetric peroxidase mimetic assay for uranyl detection in sea water. ACS Appl. Mater. Interfaces 2015, 7, 4589–4594.

    Article  Google Scholar 

  15. Shamsipur, M.; Molaabasi, F.; Hosseinkhani, S.; Rahmati, F. Detection of early stage apoptotic cells based on label-free cytochrome c assay using bioconjugated metal nanoclusters as fluorescent probes. Anal. Chem. 2016, 88, 2188–2197.

    Article  Google Scholar 

  16. West, A. L.; Griep, M. H.; Cole, D. P.; Karna, S. P. Dnase 1 retains endodeoxyribonuclease activity following gold nanocluster synthesis. Anal. Chem. 2014, 86, 7377–7382.

    Article  Google Scholar 

  17. Ding, H.; Yang, D. Y.; Zhao, C.; Song, Z. K.; Liu, P. C.; Wang, Y.; Chen, Z. J.; Shen, J. C. Protein-gold hybrid nanocubes for cell imaging and drug delivery. ACS Appl. Mater. Interfaces 2015, 7, 4713–4719.

    Article  Google Scholar 

  18. Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions. Chem. Commun. 2010, 46, 961–963.

    Article  Google Scholar 

  19. Hofmann, C. M.; Essner, J. B.; Baker, G. A.; Baker, S. N. Protein-templated gold nanoclusters sequestered within sol-gel thin films for the selective and ratiometric luminescence recognition of Hg2+. Nanoscale 2014, 6, 5425–5431.

    Article  Google Scholar 

  20. Durgadas, C. V.; Sharma, C. P.; Sreenivasan, K. Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 2011, 136, 933–940.

    Article  Google Scholar 

  21. Lin, Z. J.; Luo, F. Q.; Dong, T. Q.; Zheng, L. Y.; Wang, Y. X.; Chi, Y. W.; Chen, G. N. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution. Analyst 2012, 137, 2394–2399.

    Article  Google Scholar 

  22. Liu, X.; Fu, C. H.; Ren, X. L.; Liu, H. Y.; Li, L. L.; Meng, X. W. Fluorescence switching method for cascade detection of salicylaldehyde and zinc(II) ion using protein protected gold nanoclusters. Biosens. Bioelectron. 2015, 74, 322–328.

    Article  Google Scholar 

  23. Xu, Y. L.; Sherwood, J.; Qin, Y.; Crowley, D.; Bonizzoni, M.; Bao, Y. P. The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale 2014, 6, 1515–1524.

    Article  Google Scholar 

  24. Sun, C. J.; Yang, H.; Yuan, Y.; Tian, X.; Wang, L. M.; Guo, Y.; Xu, L.; Lei, J. L.; Gao, N.; Anderson, G. J. et al. Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. J. Am. Chem. Soc. 2011, 133, 8617–8624.

    Article  Google Scholar 

  25. Volden, S.; Lystvet, S. M.; Halskau, Ø.; Glomm, W. R. Generally applicable procedure for in situ formation of fluorescent protein-gold nanoconstructs. RSC Adv. 2012, 2, 11704–11711.

    Article  Google Scholar 

  26. Sun, C. J.; Yuan, Y.; Xu, Z. H.; Ji, T. J.; Tian, Y. H.; Wu, S.; Lei, J. L.; Li, J. Y.; Gao, N.; Nie, G. J. Fine-tuned H-ferritin nanocage with multiple gold clusters as near-infrared kidney specific targeting nanoprobe. Bioconjugate Chem. 2015, 26, 193–196.

    Article  Google Scholar 

  27. Baksi, A.; Mitra, A.; Mohanty, J. S.; Lee, H.; De, G.; Pradeep, T. Size evolution of protein-protected gold clusters in solution: A combined SAXS-MS investigation. J. Phys. Chem. C 2015, 119, 2148–2157.

    Article  Google Scholar 

  28. Zaccheo, B. A.; Crooks, R. M. Stabilization of alkaline phosphatase with Au@Ag2O nanoparticles. Langmuir 2011, 27, 11591–11596.

    Article  Google Scholar 

  29. Si, Y. M.; Sun, Z. Z.; Zhang, N.; Qi, W.; Li, S. Y.; Chen, L. J.; Wang, H. Ultrasensitive electroanalysis of low-level free micrornas in blood by maximum signal amplification of catalytic silver deposition using alkaline phosphataseincorporated gold nanoclusters. Anal. Chem. 2014, 86, 10406–10414.

    Article  Google Scholar 

  30. Zhao, Q.; Chen, S. N.; Zhang, L. Y.; Huang, H. W.; Zeng, Y. L.; Liu, F. P. Multiplex sensor for detection of different metal ions based on on-off of fluorescent gold nanoclusters. Anal. Chim. Acta 2014, 852, 236–243.

    Article  Google Scholar 

  31. Han, Y. Y.; Ding, C. Q.; Zhou, J.; Tian, Y. Single probe for imaging and biosensing of pH, Cu2+ ions, and pH/Cu2+ in live cells with ratiometric fluorescence signals. Anal. Chem. 2015, 87, 5333–5339.

    Article  Google Scholar 

  32. Yan, Y. H.; Yu, H.; Zhang, K.; Sun, M. T.; Zhang, Y. J.; Wang, X. K.; Wang, S. H. Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions. Nano Res. 2016, 9, 2088–2096.

    Article  Google Scholar 

  33. Ghosh, S.; Anand, U.; Mukherjee, S. Luminescent silver nanoclusters acting as a label-free photoswitch in metal ion sensing. Anal. Chem. 2014, 86, 3188–3194.

    Article  Google Scholar 

  34. Yu, P.; Wen, X. M.; Toh, Y.-R.; Huang, J.; Tang, J. Metallophilic bond-induced quenching of delayed fluorescence in Au25@BSA nanoclusters. Part. Part. Syst. Char. 2013, 30, 467–472.

    Article  Google Scholar 

  35. Zheng, X. Y.; Yao, T. M.; Zhu, Y.; Shi, S. Cu2+ modulated silver nanoclusters as an on-off-on fluorescence probe for the selective detection of L-histidine. Biosens. Bioelectron. 2015, 66, 103–108.

    Article  Google Scholar 

  36. Rigo, A.; Corazza, A.; di Paolo, M. L.; Rossetto, M.; Ugolini, R.; Scarpa, M. Interaction of copper with cysteine: Stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation. J. Inorg. Biochem. 2004, 98, 1495–1501.

    Article  Google Scholar 

  37. Morishita, K.; MacLean, J. L.; Liu, B. W.; Jiang, H.; Liu, J. W. Correlation of photobleaching, oxidation and metal induced fluorescence quenching of DNA-templated silver nanoclusters. Nanoscale 2013, 5, 2840–2849.

    Article  Google Scholar 

  38. Sun, J.; Yang, F.; Zhao, D.; Chen, C. X.; Yang, X. R. Integrated logic gate for fluorescence turn-on detection of histidine and cysteine based on Ag/Au bimetallic nanoclusters- Cu2+ ensemble. ACS Appl. Mater. Interfaces 2015, 7, 6860–6866.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National High Technology Research and Development Program of China (No. 2015AA020502), the National Natural Science Foundation of China (Nos. 81325011, 21675023, and 21327902), Jiangsu Natural Science Foundation (No. BK20161413), and the Fundamental Research Funds for the Central Universities (No. 2242016K41023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Jiang or Xuemei Wang.

Electronic supplementary material

12274_2017_1633_MOESM1_ESM.pdf

Design of dual metal ions/dual amino acids integrated photoluminescent logic gate by high-molecular weight protein-localized Au nanoclusters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Jiang, H. & Wang, X. Design of dual metal ions/dual amino acids integrated photoluminescent logic gate by high-molecular weight protein-localized Au nanoclusters. Nano Res. 11, 311–322 (2018). https://doi.org/10.1007/s12274-017-1633-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1633-0

Keywords

Navigation