Skip to main content
Log in

Graphene electrode with tunable charge transport in thin-film transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene, a single atomic layer of sp2-hybridized carbon, has immense potential as a transparent conducting material in electronic applications owing to its superior properties, including optical transparency and high conductivity. Particularly, the tunable work function of graphene enables the integration of graphene electrodes with various electronic devices. To achieve high performance in graphene-based devices, effective charge transport between the graphene electrode and the semiconducting material needs to be optimized; this is closely related to the modulation of the Schottky barrier (SB). In this study, we investigate the tunable charge transport properties as a function of graphene doping in n-channel thin-film transistors (TFTs) in terms of the electrical characteristics and low-frequency noise (LFN) behaviors. Alkali metal carbonates tuned the work function of graphene, resulting in a dramatic decrease in the SB and an improvement of the carrier injection in n-channel TFTs. The electrical performance of the TFTs was evaluated by extraction of the field-effect mobilities and ratio of contact resistance to total resistance. Furthermore, the level of contact noise created by the barrier height fluctuation and relative contribution of channel noise and contact noise in the TFTs was investigated by LFN measurements to demonstrate the tunable charge transport. Our findings therefore provide new insights into the tunable charge transport mechanism in graphene-based devices and reveal the immense potential of graphene as electrodes in high performance flexible and transparent displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  3. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  Google Scholar 

  4. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

    Article  Google Scholar 

  5. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451–10453.

    Article  Google Scholar 

  6. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  Google Scholar 

  7. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918.

    Article  Google Scholar 

  8. Chen, Z.; Cotterell, B.; Wang, W.; Guenther, E.; Chua, S. J. A mechanical assessment of flexible optoelectronic devices. Thin Solid Films 2001, 394, 201–205.

  9. Kumar, A.; Zhou, C. W. The race to replace tin-doped indium oxide: Which material will win? ACS Nano 2010, 4, 11–14.

    Article  Google Scholar 

  10. Sharma, A.; Andersson, G.; Lewis, D. A. Role of humidity on indium and tin migration in organic photovoltaic devices. Phys. Chem. Chem. Phys. 2011, 13, 4381–4387.

    Article  Google Scholar 

  11. Balandin, A. A. Low-frequency 1/f noise in graphene devices. Nat. Nanotechnol. 2013, 8, 549–555.

    Article  Google Scholar 

  12. Li, P.; Wang, Q. H.; Wang, X. H.; Lu, H. B.; Zhang, G. B.; Wang, X. H.; Qiu, L. Z. Investigation of the semiconductor/ electrode interface in organic thin-film transistor using graphene electrodes. Syn. Metals 2015, 202, 103–109.

    Article  Google Scholar 

  13. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  14. Pang, S. P.; Hernandez, Y.; Feng, X. L.; Müllen, K. Graphene as transparent electrode material for organic electronics. Adv. Mater. 2011, 23, 2779–2795.

    Article  Google Scholar 

  15. Di, C. A.; Wei, D. C.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Zhu, D. B. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater. 2008, 20, 3289–3293.

    Article  Google Scholar 

  16. Wu, J. B.; Agrawal, M.; Becerril, H. A.; Bao, Z.; Liu, Z. F.; Chen, Y. S.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43–48.

    Article  Google Scholar 

  17. Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 2012, 6, 105–110.

    Article  Google Scholar 

  18. Sun, T.; Wang, Z. L.; Shi, Z. J.; Ran, G. Z.; Xu, W. J.; Wang, Z. Y.; Li, Y. Z.; Dai, L.; Qin, G. G. Multilayered graphene used as anode of organic light emitting devices. Appl. Phys. Lett. 2010, 96, 133301.

    Article  Google Scholar 

  19. Lee, S. T.; Gao, Z. Q.; Hung, L. S. Metal diffusion from electrodes in organic light-emitting diodes. Appl. Phys. Lett. 1999, 75, 1404–1406.

    Article  Google Scholar 

  20. Wang, Y.; Tong, S. W.; Xu, X. F.; Özyilmaz, B.; Loh, K. P. Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv. Mater. 2011, 23, 1514–1518.

    Article  Google Scholar 

  21. Han, T. H.; Kwon, S. J.; Li, N. N.; Seo, H. K.; Xu, W. T.; Kim, K. S.; Lee, T. W. Versatile p-type chemical doping to achieve ideal flexible graphene electrodes. Angew. Chem., Int. Ed. 2016, 55, 6197–6201.

    Article  Google Scholar 

  22. Kim, J. S.; Kim, B. J.; Choi, Y. J.; Lee, M. H.; Kang, M. S.; Cho, J. H. An organic vertical field-effect transistor with underside-doped graphene electrodes. Adv. Mater. 2016, 28, 4803–4810.

    Article  Google Scholar 

  23. Shin, D. W.; Lee, H. M.; Yu, S. M.; Lim, K. S.; Jung, J. H.; Kim, M. K.; Kim, S. W.; Han, J. H.; Ruoff, R. S.; Yoo, J. B. A facile route to recover intrinsic graphene over large scale. ACS Nano 2012, 6, 7781–7788.

  24. Chakrapani, V.; Angus, J. C.; Anderson, A. B.; Wolter, S. D.; Stoner, B. R.; Sumanasekera, G. U. Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 2007, 318, 1424–1430.

    Article  Google Scholar 

  25. Park, J.; Lee, W. H.; Huh, S.; Sim, S. H.; Kim, S. B.; Cho, K.; Hong, B. H.; Kim, K. S. Work-function engineering of graphene electrodes by self-assembled monolayers for highperformance organic field-effect transistors. J. Phys. Chem. Lett. 2011, 2, 841–845.

    Article  Google Scholar 

  26. Lin, Y. C.; Lin, C. Y.; Chiu, P. W. Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 2010, 96, 133110.

    Article  Google Scholar 

  27. Guo, B. D.; Liu, Q.; Chen, E. D.; Zhu, H. W.; Fang, L.; Gong, J. R. Controllable N-doping of graphene. Nano Lett. 2010, 10, 4975–4980.

    Article  Google Scholar 

  28. Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188–1193.

    Article  Google Scholar 

  29. Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R. Synthesis, structure, and properties of boronand nitrogen-doped graphene. Adv. Mater. 2009, 21, 4726–4730.

    Google Scholar 

  30. Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.

    Article  Google Scholar 

  31. Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342.

    Article  Google Scholar 

  32. Luo, Z. Q.; Lim, S.; Tian, Z. Q.; Shang, J. Z.; Lai, L. F.; MacDonald, B.; Fu, C.; Shen, Z. X.; Yu, T.; Lin, J. Y. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 2011, 21, 8038–8044.

    Article  Google Scholar 

  33. Zhang, C. H.; Fu, L.; Liu, N.; Liu, M. H.; Wang, Y. Y.; Liu, Z. F. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 2011, 23, 1020–1024.

    Article  Google Scholar 

  34. Kwon, K. C.; Choi, K. S.; Kim, S. Y. Increased work function in few-layer graphene sheets via metal chloride doping. Adv. Func. Mater. 2012, 22, 4724–4731.

    Article  Google Scholar 

  35. Kwon, K. C.; Choi, K. S.; Kim, B. J.; Lee, J. L.; Kim, S. Y. Work-function decrease of graphene sheet using alkali metal carbonates. J. Phys. Chem. C 2012, 116, 26586–26591.

    Article  Google Scholar 

  36. Kwon, K. C.; Choi, K. S.; Kim, C.; Kim, S. Y. Role of metal cations in alkali metal chloride doped graphene. J. Phys. Chem. C 2014, 118, 8187–8193.

    Article  Google Scholar 

  37. Bong, J. H.; Sul, O.; Yoon, A.; Choi, S. Y.; Cho, B. J. Facile graphene n-doping by wet chemical treatment for electronic applications. Nanoscale 2014, 6, 8503–8508.

    Article  Google Scholar 

  38. Chang, J. H.; Lin, W. H.; Wang, P. C.; Taur, J. I.; Ku, T. A.; Chen, W. T.; Yan, S. J.; Wu, C. I. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode. Sci. Rep. 2015, 5, 9693.

    Article  Google Scholar 

  39. Sanders, S.; Cabrero-Vilatela, A.; Kidambi, P. R.; Alexander-Webber, J. A.; Weijtens, C.; Braeuninger-Weimer, P.; Aira, A. I.; Qasim, M. M.; Wilkinson, T. D.; Roberston, T. et al. Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics. Nanoscale 2015, 7, 13135–13142.

    Article  Google Scholar 

  40. Park, H. Y.; Jung, W. S.; Kang, D. H.; Jeon, J.; Yoo, G.; Park, Y.; Lee, J.; Jang, Y. H.; Lee, J.; Park, S. et al. Extremely low contact resistance on graphene through n-type doping and edge contact design. Adv. Mater. 2016, 28, 864–870.

    Article  Google Scholar 

  41. Ashraf, A.; Wu, Y. B.; Wang, M. C.; Yong, K.; Sun, T.; Jing, Y. H.; Haasch, R. T.; Aluru, N. R.; Nam, S. Dopinginduced tunable wettability and adhesion of graphene. Nano Lett. 2016, 16, 4708–4712.

    Article  Google Scholar 

  42. Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.

    Article  Google Scholar 

  43. Kwon, J. Y.; Son, K. S.; Jung, J. S.; Kim, T. S.; Ryu, M. K.; Park, K. B.; Yoo, B. W; Kim, J. W.; Lee, Y. G.; Park, K. C. et al. Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display. IEEE Electron Dev. Lett. 2008, 29, 1309–1311.

    Article  Google Scholar 

  44. Barquinha, P.; Vilà, A. M.; Gonçalves, G.; Pereira, L.; Martins, R.; Morante, J. R.; Fortunato, E. Gallium–indium–zinc-oxide-based thin-film transistors: Influence of the source/ drain material. IEEE Trans. Electron Dev. 2008, 55, 954–960.

    Article  Google Scholar 

  45. Kim, J. B.; Fuentes-Hernandez, C.; Kippelen, B. Highperformance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator. Appl. Phys. Lett. 2008, 93, 242111.

    Article  Google Scholar 

  46. Na, J. H.; Kitamura, M.; Arakawa, Y. High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes. Appl. Phys. Lett. 2008, 93, 063501.

    Article  Google Scholar 

  47. Cherenack, K. H.; Münzenrieder, N. S.; Tröster, G. Impact of mechanical bending on ZnO and IGZO thin-film transistors. IEEE Electron Dev. Lett. 2010, 31, 1254–1256.

    Article  Google Scholar 

  48. Park, J. S.; Kim, T. W.; Stryakhilev, D.; Lee, J. S.; An, S. G.; Pyo, Y. S.; Lee, D. B.; Mo, Y. G.; Jin, D. U.; Chung, H. K. Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl. Phys. Lett. 2009, 95, 013503.

    Article  Google Scholar 

  49. Liu, Y.; Zhou, H. L.; Cheng, R.; Yu, W.; Huang, Y.; Duan, X. F. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett. 2014, 14, 1413–1418.

    Article  Google Scholar 

  50. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

    Article  Google Scholar 

  51. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

    Article  Google Scholar 

  52. Wang, Q. H.; Jin, Z.; Kim, K. K.; Hilmer, A. J.; Paulus, G. L. C.; Shih, C. J.; Ham, M.-H.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 2012, 4, 724–732.

    Article  Google Scholar 

  53. Yang, S. Y.; Oh, J. G.; Jung, D. Y.; Choi, H.; Yu, C. H.; Shin, J.; Choi, C. G.; Cho, B. J.; Choi, S. Y. Metal-etchingfree direct delamination and transfer of single-layer graphene with a high degree of freedom. Small 2015, 11, 175–181.

    Article  Google Scholar 

  54. Moon, H.; Seong, H.; Shin, W. C.; Park, W. T.; Kim, M.; Lee, S.; Bong, J. H.; Noh, Y. Y.; Cho, B. J.; Yoo, S. et al. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat. Mater. 2015, 14, 628–635.

    Article  Google Scholar 

  55. Chen, S. H.; Liu, H. C.; Lee, C. Y.; Gan, J. Y.; Zan, H. W.; Hwang, J. C.; Cheng, Y. Y.; Lyu, P. C. High performance electric-double-layer amorphous IGZO thin-film transistors gated with hydrated bovine serum albumin protein. Org. Electron. 2015, 24, 200–204.

    Article  Google Scholar 

  56. Malay, R.; Nandur, A.; Hewlett, J.; Vaddi, R.; White, B. E.; Poliks, M. D.; Garner, S. M.; Huang, M. H.; Pollard, S. C. Active and passive integration on flexible glass substrates: Subtractive single micron metal interposers and high performance IGZO thin film transistors. In Proceeings of the IEEE 65th Electronic Components and Technology Conference, San Diego, CA, 2015, pp 691–699.

    Google Scholar 

  57. Streetman, B. G.; Banerjee, S. Solid State Electronic Devices; 5th ed., Prentice Hall: New Jersey, 2000.

    Google Scholar 

  58. Godo, H.; Kawae, D.; Yoshitomi, S.; Sasaki, T.; Ito, S.; Ohara, H.; Miyanaga, A.; Yamazaki, S. P-9: Numerical analysis on temperature dependence of characteristics of amorphous In-Ga-Zn-oxide TFT. SID Symp. Dig. Tech. Papers 2009, 40, 1110–1112.

    Article  Google Scholar 

  59. Vandamme, L. K. J.; Li, X. S.; Rigaud, D. 1/f noise in MOS devices, mobility or number fluctuations? IEEE Trans. Electron Dev. 1994, 41, 1936–1945.

    Article  Google Scholar 

  60. Hooge, F. N.; Kleinpenning, T. G. M.; Vandamme, L. K. J. Experimental studies on 1/f noise. Rep. Prog. Phys. 1981, 44, 479–532.

    Article  Google Scholar 

  61. Kumar, A.; Latzel, M.; Christiansen, S.; Kumar, V.; Singh, R. Effect of rapid thermal annealing on barrier height and 1/f noise of Ni/GaN Schottky barrier diodes. Appl. Phys. Lett. 2015, 107, 093502.

    Article  Google Scholar 

  62. Kingston, R. H. Semiconductor Surface Physics; University of Pennsylvania Press: Pennsylvania, 1957.

    Book  Google Scholar 

  63. Lee, J. M.; Cheong, W. S.; Hwang, C. S.; Cho, I. T.; Kwon, H. I.; Lee, J. H. Low-frequency noise in amorphous indium–gallium–zinc-oxide thin-film transistors. IEEE Electron Dev. Lett. 2009, 30, 505–507.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Graphene Materials and Components Development Program of MOTIE/KEIT (No. 10044412) and the Global Frontier Research Center for Advanced Soft Electronics (No. 2011- 0031640).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Yool Choi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, IJ., Kim, T.I., Cho, IT. et al. Graphene electrode with tunable charge transport in thin-film transistors. Nano Res. 11, 274–286 (2018). https://doi.org/10.1007/s12274-017-1630-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1630-3

Keywords

Navigation