Skip to main content
Log in

Highly ordered macroporous–mesoporous Ce0.4Zr0.6O2 as dual-functional material in a polysulfide polymer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A highly hierarchically ordered macroporous–mesoporous Ce0.4Zr0.6O2 solid solution with crystalline framework walls was directly and simply prepared using polystyrene (PS) microspheres and a block copolymer as dual templates. The PS microspheres and block copolymer were assembled into colloidal crystals and mesoscopic rod-like micelles as macroporous and mesoporous templates, respectively, by a one-step process. This process offers a facile method to prepare hierarchically ordered porous materials. Compared to commercial ceria, the macroporous–mesoporous Ce0.4Zr0.6O2 material significantly improved the ultraviolet resistance and mechanical performance of a polysulfide polymer. Because the ordered macroporous–mesoporous Ce0.4Zr0.6O2 can disperse uniformly in the polysulfide polymer based on the open macroporous structure for diffusion and mobility and mesoporous structure for high surface areas. Furthermore, these results show that better-performing polysulfide polymers can be achieved by adding hierarchically structured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas, R.; Sinturel, C.; Pionteck, J.; Puliyalil, H.; Thomas, S. In-situ cure and cure kinetic analysis of a liquid rubber modified epoxy resin. Ind. Eng. Chem. Res. 2012, 51, 12178–12191.

    Google Scholar 

  2. Soroush, A.; Haghighat, H. R.; Sajadinia, S. H. Thermal and mechanical properties of polysulfide/epoxy copolymer system: The effect of anhydride content. Polym. Adv. Technol. 2014, 25, 184–190.

    Article  Google Scholar 

  3. Huang, P.; Zheng, S. X.; Huang, J. Y.; Guo, Q. P.; Zhu, W. Miscibility and mechanical properties of epoxy resin/ polysulfone blends. Polymer 1997, 38, 5565–5571.

    Article  Google Scholar 

  4. Matsui, T.; Miwa, Y. Detection of a new crosslinking and properties of liquid polysulfide polymer. J. Appl. Polym. Sci. 1999, 71, 59–66.

    Article  Google Scholar 

  5. Donaldson, I. D.; Grimes, S. M.; Houlson, A. D.; Behn, S. Curing of a polysulfide sealant with sodium birnessite. J. Appl. Polym. Sci. 2000, 77, 1177–1181.

    Article  Google Scholar 

  6. Thomas, R.; Ding, Y. M.; He, Y. L.; Yang, L.; Moldenaers, P.; Yang, W. M.; Czigany, T.; Thomas, S. Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 2008, 49, 278–294.

    Article  Google Scholar 

  7. Thomas, R.; Durix, S.; Sinturel, C.; Omonov, T.; Goossens, S.; Groeninckx, G.; Moldenaers, P.; Thomas, S. Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin–Effects of a liquid rubber inclusion. Polymer 2007, 48, 1695–1710.

    Article  Google Scholar 

  8. Ratna, D. Phase separation in liquid rubber modified epoxy mixture. Relationship between curing conditions, morphology and ultimate behavior. Polymer 2001, 42, 4209–4218.

    Article  Google Scholar 

  9. Kuang, D. B.; Brezesinski, T.; Smarsly, B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. J. Am. Chem. Soc. 2004, 126, 10534–10535.

    Article  Google Scholar 

  10. Wang, Z. Y.; Li, F.; Ergang, N. S.; Stein, A. Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon−carbon nanocomposites. Chem. Mater. 2006, 18, 5543–5553.

    Article  Google Scholar 

  11. Deng, Y. H.; Liu, C.; Yu, T.; Liu, F.; Zhang, F. Q.; Wan, Y.; Zhang, L. J.; Wang, C. C.; Tu, B.; Webley, P. A. et al. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chem. Mater. 2007, 19, 3271–3277.

    Article  Google Scholar 

  12. Li, Z. X.; Li, M. M. Highly ordered hierarchical macroporous–mesoporous alumina with crystalline walls. Catal. Lett. 2016, 146, 1712–1717.

    Article  Google Scholar 

  13. Chai, G. S.; Shin, I. S.; Yu, J. S. Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Adv. Mater. 2004, 16, 2057–2061.

    Article  Google Scholar 

  14. Li, Z. X.; Shi, F. B.; Yan, C. H. Controllable assembly of hierarchical macroporous–mesoporous LnFeO3 and their catalytic performance in theCO + NO reaction. Langmuir 2015, 31, 8672−8679.

    Article  Google Scholar 

  15. Xu, J. M.; Wang, A. Q.; Wang, X. D.; Su, D. S.; Zhang, T. Synthesis, characterization, and catalytic application of highly ordered mesoporous alumina-carbon nanocomposites. Nano Res. 2011, 4, 50–60.

    Article  Google Scholar 

  16. Dacquin, J. P.; Dhainaut, J.; Duprez, D.; Royer, S.; Lee, A. F.; Wilson, K. An efficient route to highly organized, tunable macroporous−mesoporous alumina. J. Am. Chem. Soc. 2009, 131, 12896−12897.

    Article  Google Scholar 

  17. Chen, J. C.; Zhang, R. Y.; Han L.; Tu, B.; Zhao, D. Y. Onepot synthesis of thermally stable gold@mesoporous silica core–shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871–879.

    Article  Google Scholar 

  18. Blin, J. L.; Léonard, A.; Yuan, Z. Y.; Gigot, L.; Vantomme, A.; Cheetham, A. K.; Su, B. L. Hierarchically mesoporous/ macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angew. Chem.,Int. Ed. 2003, 42, 2872–2875.

    Article  Google Scholar 

  19. El Kadib, A.; Chimenton, R.; Sachse, A.; Fajula, F.; Galarneau A.; Coq, B. Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis. Angew. Chem., Int. Ed. 2009, 48, 4969–4972.

    Article  Google Scholar 

  20. Lu, A. H.; Schüth F. Nanocasting: Aversatile strategy for creating nanostructured porous materials. Adv. Mater. 2006, 18, 1793–1805.

    Article  Google Scholar 

  21. Corma, A.; Atienzar, P.; García, H.; Chane-Ching, J. Y. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 2004, 3, 394–397.

    Article  Google Scholar 

  22. Ho, C. M.; Yu, J. C.; Kwong, T.; Mak, A. C.; Lai, S. Morphology-controllable synthesis of mesoporous CeO2 nano-and microstructures. Chem. Mater. 2005, 17, 4514–4522.

    Article  Google Scholar 

  23. Morris, C. A.; Anderson, M. L.; Stroud, R. M.; Merzbacher, C. I.; Rolison, D. R. Silica sol as a nanoglue: Flexible synthesis of composite aerogels. Science 1999, 284, 622–624.

    Article  Google Scholar 

  24. Krawiec, P.; Kockrick, E.; Simon, P.; Auffermann, G.; Kaskel, S. Platinum-catalyzed template removal for the in situ synthesis of MCM-41 supported catalysts. Chem. Mater. 2006, 18, 2663–2669.

    Article  Google Scholar 

  25. Carreon, M. A.; Guliants, V. V. Ordered meso- and macroporous binary and mixed metal oxides. Eur. J. Inorg. Chem. 2005, 1, 27–43.

    Article  Google Scholar 

  26. Blasco, T.; Corma, A.; Navarro, M. T.; Pariente, J. P. Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. J. Catal. 1995, 156, 65–74.

    Article  Google Scholar 

  27. Zhang, L.; Papaefthymiou, G. C.; Ying, J. Y. Synthesis and properties of γ-Fe2O3 nanoclusters within mesoporousaluminosilicate matrices. J. Phys. Chem. B 2001, 105, 7414–7423.

    Article  Google Scholar 

  28. Taguchi, A.; Schüth, F. Ordered mesoporous materials in catalysis. Micropor. Mesopor. Mater. 2005, 77, 1–45.

    Article  Google Scholar 

  29. Chane-Ching, J. Y.; Cobo, F.; Aubert, D.; Harvey, H. G.; Airiau, M.; Corma, A. A general method for the synthesis of nanostructured large-surface-area materials through the self-assembly of functionalized nanoparticles. Chem.—Eur. J. 2005, 11, 979–987.

    Article  Google Scholar 

  30. Kuemmel, M.; Grosso, D.; Boissière, C.; Smarsly, B.; Brezesinski, T.; Albouy, P. A.; Amenitsch, H.; Sanchez, C. Thermally stable nanocrystalline γ-alumina layers with highly ordered 3D mesoporosity. Angew. Chem., Int. Ed. 2005, 44, 4589–4592.

    Article  Google Scholar 

  31. Yuan, Q.; Yin, A. X.; Luo, C.; Sun, L. D.; Zhang, Y. W.; Duan, W. T.; Liu, H. C.; Yan, C. H. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability. J. Am. Chem. Soc. 2008, 130, 3465–3472.

    Article  Google Scholar 

  32. Xue, C. F.; Tu, B.; Zhao, D. Y. Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly. Nano Res. 2009, 2, 242–253.

    Article  Google Scholar 

  33. Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987−6041.

    Article  Google Scholar 

  34. Montini, T.; Speghini, A.; De Rogatis, L.; Lorenzut, B.; Bettinelli, M.; Graziani, M.; Fornasiero, P. Identification of the structural phases of CexZr1−x O2 by Eu(III) luminescence studies. J. Am. Chem. Soc. 2009, 131, 13155–13160.

    Article  Google Scholar 

  35. López, E. F.; Escribano, V. S.; Panizza, M.; Carnasciali, M. M.; Busca, G. Vibrational and electronic spectroscopic properties of zirconia powders. J. Mater. Chem. 2001, 11, 1891–1897.

    Article  Google Scholar 

  36. Fornasiero, P.; Balducci, G.; Di Monte, R.; Kašpar, J.; Sergo, V.; Gubitosa, G.; Ferrero, A.; Graziani, M. Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2. J. Catal. 1996, 164, 173–183.

    Article  Google Scholar 

  37. Martínez-Arias, A.; Fernández-García, M.; Ballesteros, V.; Salamanca, L. N.; Conesa, J. C.; Otero, C.; Soria, J. Characterization of high surface area Zr-Ce (1:1) mixed oxide prepared by a microemulsion method. Langmuir 1999, 15, 4796–4802.

    Article  Google Scholar 

  38. Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity; Academic Press: London, 1982.

    Google Scholar 

  39. Kašpar, J.; Fornasiero, P.; Graziani, M. Use of CeO2-based oxides in the three-way catalysis. Catal. Today 1999, 50, 285–298.

    Article  Google Scholar 

  40. Kašpar, J.; Fornasiero, P.; Hickey, N. Automotive catalytic converters: Current status and some perspectives. Catal. Today 2003, 77, 419–449.

    Article  Google Scholar 

  41. Li, Z. X.; Li, L. L.; Yuan, Q.; Feng, W.; Xu, J.; Sun, L. D.; Song, W. G.; Yan, C. H. Sustainable and facile route to nearly monodisperse spherical aggregates of CeO2 nanocrystals with ionic liquids and their catalytic activities for CO oxidation. J. Phys. Chem. C 2008, 112, 18405–18411.

    Article  Google Scholar 

  42. Marabelli, F.; Wachter, P. Covalent insulator CeO2: Optical reflectivity measurements. Phys. Rev. B 1987, 36, 1238–1243.

    Article  Google Scholar 

  43. Petrovsky, V.; Gorman, B. P.; Erson, H. U.; Petrovsky, T. Optical properties of CeO2 films prepared from colloidal suspension. J. Appl. Phys. 2001, 90, 2517–2521.

    Article  Google Scholar 

  44. Hernández-Alonso, M. D.; BelénHungría, A.; Martínez- Arias, A. J.; Coronado, J. M.; Carlos Conesa, J.; Soria, J.; Fernández-García, M. Confinement effects in quasistoichiometric CeO2 nanoparticles. Phys. Chem. Chem. Phys. 2004, 6, 3524–3529.

    Article  Google Scholar 

  45. Tsunekawa, S.; Fukuda, T.; Kasuya, A. Blueshift in ultravioletabsorption spectra of monodisperse CeO2–x nanoparticles. J. Appl. Phys. 2000, 87, 1318–1321.

    Article  Google Scholar 

  46. Patsalas, P.; Logothetidis, S.; Sygellou, L.; Kennou, S. Structure-dependent electronic properties of nanocrystalline cerium oxide films. Phys. Rev. B 2003, 68, 035104.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (No. 21501197) and Foundation of China University of Petroleum (Beijing) (No. 2462015YJRC004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxing Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, J., Li, M. et al. Highly ordered macroporous–mesoporous Ce0.4Zr0.6O2 as dual-functional material in a polysulfide polymer. Nano Res. 11, 80–88 (2018). https://doi.org/10.1007/s12274-017-1607-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1607-2

Keywords

Navigation